Автомобильные предохранители: основные типы защиты цепи, как сделать выбор по параметрам планок

Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

– времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

– время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

– характеристики предохранителя должны быть стабильными;

– в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

– замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

– отключаются при понижении или полном исчезновении напряжения;

– повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2

Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность

Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

Что такое плавкие предохранители и для чего они необходимы?

Защита электрических цепей от КЗ и перегрузок является одной из самых важных задач в электротехнике. С этой целью изобретено множество защитных аппаратов, которые сегодня применяются как в силовых цепях, так и для защиты электрических схем в различных устройствах. Практически в каждом сложном электроприборе можно встретить плавкие предохранители – одноразовые коммутационные устройства, разъединяющие цепь в аварийной ситуации.

Назначение и принцип действия

Основная задача плавких предохранителей – защита электрической сети и электрооборудования от сверхтоков, возникающих при коротком замыкании или в результате критических перегрузок. При этом они обеспечивают бесперебойную работу защищаемых цепей в номинальном режиме.

В отличие от автоматического выключателя, часто применяемого в электротехнике, плавкая вставка срабатывает только один раз, после чего он подлежит замене. Однако срабатывает такое устройство со стопроцентной вероятностью, в то время как автоматика после многократного отключения может подвести. Именно поэтому для защиты дорогостоящего оборудования используют плавкие вставки. Не отказываются от применения этих защитных устройств и в силовых цепях.

Устройство и принцип защиты

В конструкции плавкого предохранителя есть два основных элемента: корпус (держатель) с контактами и плавкую вставку (рисунок 1). Строго говоря, только сочетание этих элементов можно называть предохранителем. Очень часто деталь плавкой вставки (особенно если она заменяемая) называют плавким предохранителем. В данной статье мы тоже иногда будем придерживаться этой традиции.

Рис. 1. Конструкция плавкого предохранителя

Рабочим элементом вставки является проводник из меди или сплава металлов. Благодаря этому плавкому элементу происходят отключения цепи в критических ситуациях.

В качестве плавкого элемента может быть одна или несколько медных проволок, пластина либо фигурная деталь. Эти проводники помещаются в жаропрочный корпус: стеклянный, керамический (рис. 2) или пластиковый. В зависимости от назначения, пространство вокруг плавкого элемента может быть заполнено кварцевым песком или окружено легкоиспаряющимся веществом, предназначенным для гашения электрической дуги.

Рис. 2. Керамические плавкие вставки

При прохождении номинальных токов через проволоку вставки, она незначительно нагревается, не достигая температуры плавления. Но в режиме короткого замыкания резко возрастает величина тока, что приводит к плавлению вставок. Это приводит к разрыву цепи.

Нагревание предохранителя происходит также при перегрузках, то есть в результате превышения номинального напряжения на защищаемом участке цепи. При достижении рабочих напряжений величины, называемой током отключения, температура плавкого элемента возрастает до точки плавления и цепь разрывается. После восстановления параметров цепи плавкую вставку необходимо заменить.

Плавкие вставки имеют некую инерционность срабатывания. При КЗ задержка незаметна, так как в этом случае плавкий элемент нагревается молниеносно.

Иначе обстоит дело в случаях с перегрузками. Для достижения температуры плавления требуется больше времени. Поэтому, чтобы повысить скорость срабатывания, элементам вставок придают специальную форму и нагружают их силами упругости (один конец пластины соединяют с растянутой пружиной).

В некоторых моделях под действием пружины наружу выходит штифт, называемый индикатором срабатывания (рисунок 3). Он выступает в роли указателя срабатывания и свидетельствует о том, что вставку надо менять.

Рис. 3. Строение плавкой вставки

Цифрами на рисунке обозначено:

  • I – патрон;
  • 2 – плавкая пластина;
  • 3 – шарики из олова;
  • 4 – плавкая вставка;
  • 5 – кварцевый песок;
  • 6 – пружина;
  • 7 – текстолитовая шайба;
  • 8 – спусковой механизм указателя срабатывания;
  • 9 – колпачок;
  • 10 – ободок колпачка;
  • 11 – указатель срабатывания;
  • 12 – асбоцементная прокладка;
  • 13 – цементная заливка.

В ряде случаев для увеличения скорости срабатывания используют вставки с параллельно натянутыми проволоками разных диаметров. Перегорание самой тонкой проволоки увеличивает нагрузку на остальные элементы, ускоряя их плавление.

С целью снижения перенапряжений в некоторых конструкциях вставок применяют проволоки с разными сечениями отдельных участков. При срабатывании такого предохранителя, первым перегорает участок с наименьшим сечением вставки. Если пары расплавленного металла спровоцируют в точке разрыва электрическую дугу, то перегорит участок с большим сечением.

Читайте также:  Технические характеристики пускателя ПМЛ: описание, принцип работы магнитного устройства, уход

Конструктивные особенности предохранителей можно узнать по их маркировке. К сожалению, время-токовые характеристики наносятся не на все типы изделий. Но модели, на которые нанесены буквенно-цифровые коды, можно легко классифицировать по их назначению.

Маркировка

При выборе предохранителей важно знать диапазон защиты. Их всего 2: частичный и полный. При частичной защите предохранитель срабатывает только от токов КЗ. Полная защита включает также срабатывание от перегрузок.

В кодовой маркировке диапазоны защиты обозначены буквами «a» (частичный) и «g» (полный). Эти буквы стоят первыми перед цифрами, обозначающими номинальный ток.

На втором месте проставляются английские прописные буквы, которые обозначают:

  • G — универсальный предохранитель. Применяется для защиты оборудования: трансформаторов, кабелей, электродвигателей;
  • L — для кабелей и распределительных устройств;
  • B — защита горнодобывающего оборудования;
  • F — устройство для маломощных цепей;
  • M — прибор для защиты цепей электромоторов и коммутирующих устройств;
  • R — устройства для защиты полупроводниковых схем;
  • S — моментальное сгорание при КЗ и среднее время срабатывания при перегрузках;
  • Tr —трансформаторные предохранители.

Иногда на вставках проставляют только значения номинального тока. Такие предохранители применяются для защиты лишь от коротких замыканий.

Миниатюрные плавкие вставки маркируются в соответствии с требованиями ГОСТ Р МЭК 60127-1-2005. Согласно этому стандарту указывается номинальный ток и номинальное напряжение.

Перед показателем величины номинального тока проставляются буквенные символы:

  • FF – сверхбыстродействующие предохранители;
  • F – быстродействующие плавкие вставки;
  • М – полузамедленные;
  • Т – замедленные;
  • ТТ – сверхзамедленные.

Допускается цветная маркировка. Пример такой маркировки показан на рис. 4.

Рис. 4. Цветовая маркировка миниатюрных предохранителей

Виды и устройство

В зависимости от решаемых задач классификация предохранителей может быть следующей (рисунок 5):

  • ножевые предохранители;
  • слаботочные плавкие вставки;
  • вилочные предохранители;
  • кварцевые;
  • пробочного типа
  • газогенерирующие.

Рис. 5. Виды плавких предохранителей

Существуют также самовосстанавливающиеся предохранители, инерционные и откидывающиеся (рис. 6). Изделия инерционного типа предназначены для защиты электромоторов, которые при запуске создают большие нагрузки. Плавкие элементы нагреваются, но не перегорают. После того, как двигатель запустится, инерционный предохранитель переходит в режим ожидания.

Откидывающиеся вставки применяют в защите линий электропередач. В аварийных ситуациях плавкий элемент размыкает цепь. Под действием высокой температуры вставка удлиняется, в результате чего происходит давление на спусковой механизм, который отбрасывает предохранитель из его гнезда. Таким образом, обеспечивается надёжное отключение аварийного участка.

Рис. 6. Откидывающиеся плавкие предохранители

Устройство самовосстанавливающегося предохранителя отличается от других типов электрических аппаратов. Рабочим элементом изделия является полимер с положительным температурным коэффициентом расширения. Полимер содержит углеродистые включения, которые проводят ток.

При нагревании углеродные связи разрываются, в результате чего растёт электрическое сопротивление. При достижении температуры плавления полимера сопротивление стремится к бесконечности, то есть, цепь размыкается. При остывании возобновляется электропроводность полимера. Предохранитель самовосстанавливается.

Технические характеристики

Плавкие вставки идентифицируются двумя характеристиками: номинальным напряжением и величиной номинального тока. В промышленном оборудовании эти показатели могут достигать десятков киловольт и тысяч ампер.

В бытовых приборах применяются плавкие вставки, номинальное напряжение свободных контактах которых составляет:

  • 110, 220 В – для постоянных токов;
  • 220; 380 В – для переменного тока.

На контактах распространённых моделей номинальные токи составляют от 10 до 2500 А, а на концах плавких вставок – от 2 до 2500 А.

Преимущества и недостатки

К достоинствам плавких предохранителей относятся:

    • полная гарантия отключения аварийного участка цепи;
    • стабильность технических характеристик защиты;
    • можно применять для избирательности;
    • быстродействие;
    • безотказность;
    • простота конструкции.

Основные недостатки:

  • в трёхфазных сетях возможен перекос фаз;
  • вероятность длительного горения дуги;
  • влияние окружающей среды (температуры) на характеристики плавких вставок;
  • сложность в настройках селективной защиты;
  • необходимость замены вставки после каждого срабатывания защиты.

–>Автозапчасти и СТО –>

Половина неисправностей электрооборудования автомобилей связана с предохранителями. Их количество в машине может быть больше ста.

Водитель должен знать виды автомобильных предохранителей, их назначение, способы проверки работоспособности, методы замены и определения номинала.

Защита электрической проводки автомобиля от перегрузок и коротких замыканий важна не меньше, чем защита бытовых сетей в домах и квартирах. Для питания различных потребителей в автомобиле применяется низкое напряжение величиной от 12 до 24 вольт, но при коротком замыкании в электропроводке возникают большие токи.

Если при коротком замыкании своевременно не обесточить электропроводку автомобиля, то токоведущие жилы проводов сильно нагреются и расплавят изоляцию. В результате этого происходит воспламенение находящейся рядом обшивки салона и других элементов. Пожар быстро распространяется по всему салону, и охватывает всю машину. Скорость распространения огня настолько велика, что при приезде пожарной службы тушить бывает уже нечего.

Для предотвращения пожара в таких ситуациях путем размыкания электрической цепи способом расплавления специального легкоплавкого элемента, служат автомобильные предохранители. Срабатывание предохранителя происходит при возрастании тока выше заданной величины. Это значение плавкой вставки рассчитывается по допустимой нагрузке на электрическую цепь.

Классификация и устройство

Существует несколько видов автомобильных предохранителей, в зависимости от марки автомобиля, его года выпуска и защищаемой цепи.

Цилиндрические автомобильные предохранители

Владельцы отечественных автомобилей времен Советского Союза хорошо помнят такие автомобильные предохранители. Сначала их изготавливали одного цвета, затем для удобства пользования их стали маркировать разными цветами, в зависимости от номинального тока.

При установке или демонтаже цилиндрической вставки есть вероятность попадания под напряжение, хотя это и не так опасно, но можно получить ожог пальцев. Габаритные размеры блока предохранителей занимают много места. В отличие от других видов предохранителей, эти вставки не стандартизированы, поэтому при приобретении приходится довольствоваться надписями на их упаковке.

Ножевые автомобильные предохранители

Такие вставки имеют несколько преимуществ, по сравнению с цилиндрическими моделями. При установке ножевых вставок вы защищены от ожогов, так как при этом беретесь за изолированную часть корпуса, выполненную из цветного пластика. Удобство разных цветов корпуса состоит в том, что номинал предохранителя можно определить по цвету. Кроме этого значение номинала обозначено цифрами.


Нажмите чтобы увеличить

Обнаружить сгоревшую вставку не составит труда, так как пластиковый корпус выполнен прозрачным, и целостность плавкого элемента можно наблюдать визуально.

Ножевые автомобильные предохранители делятся также по размерам и форме корпуса:
  • Мини – маленькие.
  • Макси – большие.
  • Стандарт – средние.

Термические автомобильные предохранители

Такие вставки обычно включают в себя электромагнитную и тепловую защиту. По конструкции он аналогичен автоматическому выключателю в бытовой сети. При перегрузке или коротком замыкании срабатывает электромагнитная или тепловая защита.

После устранения неисправности в цепи предохранитель включается в работу нажатием кнопки.

Ленточные автомобильные предохранители

Для силовых цепей повышенной мощности в автомобиле применяют ленточные предохранители. Они используются для повышения надежности контактного соединения, выполняются в виде металлической пластины, и зажимаются винтами.

Существуют измененные конструкции ленточных вставок, в которых при нештатных ситуациях брызги расплавленной пластины уже не разлетаются в стороны, а защищены пластиковым корпусом.

Автомобильные предохранители на иномарках

Это интересная конструкция автомобильной вставки. Недостатком является неудобная замена, так как необходимо откручивать крепежный винт. А к достоинству можно отнести то, что нет гаек, а винт всего один, в отличие от ленточных вставок, у которых два винта.

Эта конструкция относится к дорогостоящим моделям. Она внешне похожа на обычную ножевую вставку, но работает по принципу электрического автомата, и называется прерывателем цепи.

На многих японских иномарках применяются ножевые предохранители, но отличающиеся по конструкции от отечественных образцов видом корпуса и расположением ножей.

Порог срабатывания

Правильный подбор предохранителя состоит в определении величины сопротивления его легкоплавкого элемента. Расплавление происходит из-за теплового воздействия электрического тока, в результате цепь обесточивается.

Номинальная величина тока вставки определяется по формуле:

Iном = Pмакс / U, где:

  • I ном – номинальное значение тока, А.
  • Р макс – наибольшая мощность потребителя, обозначаемая на нем, Вт.
  • U – напряжение бортовой сети, В.

Особенности замены

  • ​​​​​​​ При установке нового предохранителя следует применять только аналогичный вид такого же номинала по току. Если номинальный ток сделать выше, то он не будет срабатывать при нештатных ситуациях. Например, если на стеклоочистителях заклинит электродвигатель, то вставка не сработает, что приведет к расплавлению электрической проводки и дальнейшим печальным последствиям, рассмотренным нами выше.
  • Занижение величины тока вставки также не даст ничего хорошего. При включении нагрузки легкоплавкая часть будет быстро разрушаться и обесточивать цепь, даже при отсутствии аварийных ситуаций.
  • При замене следует определять ток не только по обозначению на корпусе предохранителя, но и посмотреть маркировку гнезда, из которого его вытащили. Это актуально для автомобилей, приобретенных у других хозяев, или вышедших из авторемонтной мастерской, так как нет уверенности в том, что другой хозяин или автомастер не установили вместо сгоревшей вставки ту, которая была в наличии, не обращая внимание на ее номинал.

Как правильно выбирать автомобильные предохранители

Несмотря на свой достаточно маленький размер, автомобильный предохранитель имеет огромное значение в работоспособности автомобиля и каждой отдельно взятой его системы. Надёжность и состояние предохранителя напрямую влияет на целостность и сохранность всего транспортного средства. Каждый автомобилист обязан знать, какими бывают предохранители и где они находятся. Это позволит при необходимости заменить их своими руками, не обращаясь за помощью к специалистам. Предохранители необходимы для защиты бортовой электросети от резких скачков напряжения, которые возникают в случае короткого замыкания. Благодаря легкоплавкому элементу, при опасности она плавится, тем самым разрывая контакт между оборудованием и питанием, идущим на него. Размыкая сеть, сгорает только предохранитель, но остаётся целым и невредимым узел, система или агрегат, которые были под его защитой. В выходе из строя этих элементов нет ничего страшного. Замена легко выполняется своими руками, а сами они достаточно дешёвые. Их стоимость в десятки, а порой и сотни раз меньше, нежели цена оборудования, которое защищает предохранитель.

Рекомендации по выборы автомобильных предохранителей.

Разновидности

Для начала разберёмся в существующих типах автомобильных предохранителей. Их можно классифицировать в зависимости от используемых материалов и самой конструкции. Поскольку теперь каждый знает, что чего в автомобиле нужны эти самые предохранители, стоит изучить их разновидности. Теперь к вопросу о том, какие бывают предохранители, использующиеся в авто. Начнём с материалов изготовления. Тут ключевую роль играет то, из чего сделана именно легкоплавкая составляющая. Потому элементы делят на:

  • алюминиевые;
  • оловянные;
  • свинцовые;
  • сплавные (сочетание из свинца и олова).

Важнейшей характеристикой изделия является скорость или время срабатывания. То есть промежуток времени, за который плавкий элемент успевает расплавиться и разъединить цепь. Чем быстрее вставка сможет расплавиться, тем меньше вероятность, что пострадает защищаемое оборудование. Чтобы добиться желаемого результата, эти вставки изготавливаются из специальных сплавов и металлов, которые характеризуются низкой температурой плавления. Они способны быстро переходить из твёрдого в жидкое состояние. Для увеличения скорости срабатывания, в конструкциях некоторых предохранителей дополнительно предусматривается наличие системы подпружинивания. Конструктивно предохранители, используемые для авто, можно разделить на пальчиковые и флажковые.

Пальчиковые изделия получили широкое распространение на классических моделях автомобилей отечественного автопроизводителя в лице АвтоВАЗ. Это стержни, на которые надевается специальная плавкая перемычка. При этом пальчиковые защитные конструкции для авто делятся на пластиковые и керамические предохранители. Учитывая некоторые особенности предохранительных блоков, которыми оснащаются автомобили Жигули, наиболее предпочтительным вариантом считается именно керамический элемент. Он обладает большей устойчивостью по отношению к высокой температуре, считаются надёжнее и не способствуют ложному срабатыванию, если предохранитель начинает греться.

Но на современных автомобилях от пальчиковых конструкций отказались. Теперь основную массу предохранителей представляют флажковые защитные элементы. Они превосходят пальчиковые аналоги по удобству применения, а также опережают в плане надёжности. Флажковые также часто называют ножевыми, поскольку их конструкция предусматривает наличие пары ножек, необходимых для контакта при установке в своё гнездо внутри предохранительного блока. Наименование флажковых предохранителей можно объяснить прямоугольной или квадратной верхней частью, где и располагается непосредственно сам легкоплавкий элемент или перемычка. Головки на флажках делают разного цвета, который напрямую зависит от номинала. Визуально действительно напоминает флаг, откуда и пошло соответствующее название. Флажковые элементы в предохранительном блоке ценятся за хороший и крепкий контакт в посадочном гнезде. Но для извлечения устройства требуется использовать специальное приспособление.

Автопроизводители предусматривают этот момент, и размещают щипцы из пластика на крышке предохранительного блока с его внутренней стороны. При необходимости такой инструмент легко найти в любом магазине автомобильных товаров. Если действуете в экстремальных условиях, либо просто некогда искать и покупать щипцы, можно ухватиться на флажок с помощью плоскогубцев. Но здесь крайне важно быть аккуратным, чтобы случайно не спровоцировать замыкание выводов. Лучше всё же взять специализированное приспособление.

Понятие номинала

Чтобы изучить все существующие виды предохранителей, используемых для авто, недостаточно знать про конструкцию и материал. Здесь большое значение играют номиналы, то есть размеры силы тока, который элемент способен через себя пропустить. При выборе предохранителей для авто, которые нужны в качестве замены сгоревшим, всегда и обязательно необходимо смотреть на эту характеристику. Дело всё в том, что на различные электролинии в транспортном средстве подключается разное количество электрозависимого оборудования. У каждого энергопотребителя есть своя определённая мощность. Вполне логично и закономерно, что для цепи питания головной оптики нужна пропускная способность значительно выше, чем в случае с цепью для питания подсветки салона. Это означает, что предохранитель фар обязан иметь большую мощность, чем защитный элемент для салонной подсветки. Номинал, означающий силу тока, способную проходить через предохранитель, измеряют в Амперах. Номинал во многом зависит от того, какой тип предохранителя используется. Флажковые значительно разнообразнее в этом компоненте, и представлены с разными номинальными значениями. А уже достаточно устаревшие пальчиковые конструкции имеют всего 2 вида номиналов. Это 16 и 8 Ампер.

Зависимость цвета от номинала

Опытные автомобилисты могут просто по цвету флажкового предохранителя точно сказать, какой номинал у того или иного предохранителя. Не лишним будет изучить все виды номиналов и типы их цветового обозначения. Представленные разновидности защитных элементов стандартизированы, а потому применяются на всех современных автомобилях. То есть автомобильные предохранители разных марок и моделей всё равно примерно имеют одинаковые цветовые оформления в зависимости от значения номинала. Могут отличаться по оттенкам. Предлагаем вам также ознакомиться с этой характеристикой и узнать, при каком цвете какое номинальное значение силы тока будет у защитного компонента.

  • предохранители на 1 Ампер всего окрашиваются чёрным цветом;
  • если цвет серый, то сила тока, проходящего через элемент, будет 2 А;
  • фиолетовым окрашивают девайсы с номиналом 3 А;
  • 5 А определяются по коричнево-жёлтому цвету;
  • чисто коричневый цвет соответствует 7,5 А;
  • если видите флажок красного цвета, это 10 Ампер;
  • для 15 А используют голубую краску;
  • все жёлтые предохранители идут на 20 А;
  • 25-амперные предохранители делают белыми;
  • зелёные элементы означают, что номинал здесь 30 А;
  • оранжевые флажки предусматривают 40 А;
  • синим цветом идентифицируют предохранители на 60 А;
  • светло-коричневые элементы означают 70 А;
  • 80 А можно узнать по светло-жёлтому цвету;
  • все сиреневые устройства идут на 100 А.

Важно учитывать, что оттенки девайсов могут несколько отличаться. Потому лучше предварительно заглянуть в руководство по эксплуатации конкретно вашего автомобиля, а также внимательно изучить информацию на крышке предохранительного блока и цифровые обозначения на самих предохранителях. Значение номинала рассчитывают исходя из того, какая нагрузка ложится на электроцепь, когда включаются все запитанные через предохранитель потребители, плюс даётся небольшой запас по прочности. Все эти параметры просчитывают ещё на этапе производства. Информация о расположении и назначении каждого отдельно взятого предохранителя детально описывается в руководстве по эксплуатации и в инструкциях по ремонту. Плюс сама крышка блока с предохранителями также содержит полезную и необходимую автомобилисту информацию. Прежде чем менять сгоревший элемент, нужно проверить, какое у него значение номинала, купить такой же флажок, и установить его на место старого элемента защиты.

Почему важно не перепутать предохранители

Каждый из вас уже прекрасно знает и понимает, что для всех предохранителей предусмотрен определённый номинал, и он адаптирован под конкретные посадочные гнёзда. Каждое гнездо ведёт к той или иной электрической линии автотранспортного средства. Если автомобилист по ошибке или из-за отсутствия соответствующих знаний перепутает места посадки предохранителей, которые отличаются по номиналу, могут возникнуть достаточно серьёзные проблемы. Когда номинал оказывается чрезмерно маленьким, то плавкий элемент будет разрушаться очень быстро при сравнительно небольших нагрузках. Само электрозависимое оборудование, к которому подведён этот предохранитель, может работать в штатном режиме и при стандартных нагрузках. Но сам защитный элемент адаптирован под меньшую силу тока. И если он сталкивается со значением, превышающим его порог плавления, легкоплавкая составляющая разрушается, цепь размывается и оборудование отключается. Здесь не обязательно нужно, чтобы произошло короткое замыкание. Предохранитель сгорит и без него.

Есть и другая ситуация, когда на место легкоплавкого флажка с маленьким номиналом устанавливают предохранители, рассчитанные на большую нагрузку. Тогда с защитным элементом может ничего не произойти даже при значительном повышении силы тока, вплоть до короткого замыкания. Плавкий компонент не воспринимают нагрузку как высокую, но для подзащитного оборудования значения превысили допустимую норму. Происходит короткое замыкание, а цепь не размыкается. Поскольку защитный элемент не сработал, начинает гореть электропроводка автомобиля, может выйти из строя всё оборудование. Как вы можете наглядно видеть, крайне нежелательно путать между собой предохранители, которые обладают разными номинальными значениями. Нужно использовать исключительно те легкоплавкие элементы, которые предусмотрел автопроизводитель для каждого конкретного посадочного гнезда в предохранительном блоке. Этот же фактор запрещает и настоятельно не рекомендует использовать при замене предохранителей подручные средства, такие как проволока, монета и прочие инструменты. Обычно подобным образом поступают в ситуациях, когда специальные щипцы отсутствуют, а нужно срочно поменять сгоревший элемент. Но вы сильно рискуете, используя подручные инструменты. Особенно это касается любых металлических предметов.

Тут важно понимать, что предохранитель вряд ли будет просто так перегорать, если он установлен в правильное гнездо и имеет соответствующий номинал. С помощью проволоки или монеты разомкнуть цепь, когда в электрооборудовании произошло короткое замыкание, не удастся. Вы лишь спровоцируете ещё большие проблемы. Ваши попытки воспользоваться металлическим предметом могут привести к возгоранию и пожару. Потому только специальные щипцы. Если вы потеряли заводской инструмент, который обычно находится на внутренней стороне крышки предохранительного блока, купите новые щипцы в автомагазине.

Рекомендации по выбору

Чтобы предохранитель не подвёл в самый ответственный момент, перед его установкой нужно убедиться в эффективности защитных характеристик элемента. Старые сгоревшие флажки не подлежат ремонту. Это доступные по цене расходники, которые меняют по мере необходимости. Но прежде чем устанавливать новый элемент, нужно разобраться в причинах выхода из строя его предшественника. Когда в машине есть проблемы, простая замена ничего не даст. Новый предохранитель сгорит так же быстро, как и предыдущий. Менять его по несколько раз в неделю точно не вариант. Если проблема с автомобилем решена, то можно смело покупать и устанавливать защитный компонент в предохранительный блок в соответствующее номиналу посадочное гнездо. При выборе рекомендуется придерживаться нескольких простых советов.

  1. Производитель. Доверяйте хорошо зарекомендовавшим себя компаниям, которые выпускают действительно качественные изделия. Поскольку предохранители дешёвые и очень востребованные, многие пытаются вывести на рынок свой продукт. И далеко не всегда он обладает хорошим уровнем качества. Даже такие элементы лучше брать от проверенных изготовителей.
  2. Место покупки. Красивая упаковка и известное название на ней ещё не говорит о том, что перед вами хороший предохранитель. Часто автомобилисты сталкиваются с подделками и дешёвыми копиями оригинальных защитных устройств. Чтобы избежать подобных ситуаций, рекомендуется обращаться к сертифицированным продавцам и магазинам с хорошей репутацией.
  3. Толщина. Бывает так, что предохранители, имеющие разный номинал, в своей конструкции имеют абсолютно одинаковые по толщине легкоплавкие перемычки. Это явный признак подделки или низкокачественного изделия. Чем выше номинал, тем толще перемычка, поскольку она рассчитана на плавление при более высоких нагрузках. Если вы заметили одинаковую толщину на номинально разных предохранителях, смело выкидывайте всю упаковку. Такие элементы к применению непригодны.
  4. Проверка коротким замыканием. Редко предохранители продаются и покупаются поштучно. Обычно это целая упаковка, которая долго и верно служит автовладельцу, хранится в гараже или в машине, чтобы при необходимости всегда был запасной предохранитель. Можно пожертвовать одним из них, тем самым удостовериться в качестве всей партии. Для этого выполняют короткое замыкание вручную. Только не нужно для этих целей жертвовать своим автомобилем. Достаточно подключить к выводам защитного элементы пару проводов через клеммы типа мама, а обратные концы соединить с выводами на автомобильной аккумуляторной батарее. При этом обязательно отключите батарею от электрической сети самого транспортного средства. После такого соединения хороший и функционирующий предохранитель сгорает. Если же легкоплавкий элемент остаётся целым, но начинает плавиться сам корпус, перед вами плохие предохранители. Использовать их категорически не рекомендуется.

Самым действенным способом обеспечить длительную и безотказную работу для предохранителей является ряд мер, направленных на предотвращение возможного возникновения короткого замыкания в бортовой электрической сети. Старайтесь не перегружать автомобиль лишним оборудованием, реально оценивать возможности генератора и аккумуляторной батареи. Также всегда следите за состоянием электрозависимых узлов, систем и механизмов. Нельзя полноценно защититься от короткого замыкания и перегрузки электросистемы автотранспортного средства. Для этого и предусмотрены специальные предохранители, которые фактически приносят себя в жертву, чтобы не пострадало само оборудование. Ведь его стоимость значительно выше по сравнению с ценой на один простой предохранитель.

2-3. Выбор предохранителей

а) Номинальное напряжение

Номинальное напряжение предохранителей и их плавких вставок UВС.НОМ независимо от места установки должно выбираться равным номинальному напряжению сети Uc:

Действительное напряжение сети не должно превышать номинального напряжения предохранителя больше чем на 10%. Установка предохранителей на меньшее номинальное напряжение, чем напряжение сети, не допускается во избежание возникновения короткого замыкания, так как изоляция каждого предохранителя рассчитана на определенное напряжение.

Установка предохранителей на большее номинальное напряжение, чем напряжение сети, также не рекомендуется. Дело в том что длина плавкой вставки для обеспечения надежного гашения дуги, возникающей при ее перегорании, тем больше, чем выше напряжение. С увеличением длины плавкой вставки, имеющей тот же номинальный ток, изменяются условия гашения дуги и ухудшается защитная характеристика вставки.

б) Предельно отключаемый ток

Предельно отключаемый ток плавкой вставки Iвс.пр. должен быть равен или больше максимального расчетного тока короткого замыкания Iк.з.макс., проходящего по цепи, защищаемой предохранителем. Если это условие не будет выполнено, дуга, возникающая при перегорании плавкой вставки, может не погаснуть, а предохранитель в результате ее длительного горения разрушится. Таким образом, вторым условием является

в) Номинальный ток

Номинальный ток плавкой вставки следует во всех случаях выбирать минимальным [Л. 8]. При этом плавкая вставка не должна перегорать при прохождении по ней максимального длительного тока нагрузки Iн.макс, что обеспечивается при соблюдении следующего условия:

Величина коэффициента зависит от характера нагрузки. Так, при постоянной нагрузке (например, освещение) = 1,1 1,2.

При переменной нагрузке плавкая вставка не должна также перегорать при кратковременных перегрузках, когда в защищаемой сети проходит ток, превышающий максимальный ток длительной нагрузки. Кратковременные перегрузки могут быть вызваны пуском или самозапуском электродвигателей, технологическими перегрузками механизмов, вращаемых электродвигателями, и другими причинами. Перегорание предохранителей в указанных случаях недопустимо, так как перегрузки по прошествии небольшого времени (2—10 с) ликвидируются и восстанавливается нормальный режим.

Для выполнения этого условия номинальный ток плавкой вставки выбирают таким, чтобы при прохождении по ней тока перегрузки Iпер. время ее перегорания было больше времени перегрузки. Практически для выполнения этого условия номинальный ток плавкой вставки выбирается упрощенным методом согласно следующему выражению [Л. 8, 13]:

где — коэффициент отстройки от тока перегрузки.

Величина этого коэффициента принимается:

При частых пусках электродвигателей с легкими условиями пуска выбор плавкой вставки производят по коэффициенту для тяжелых условий.

Этот метод не учитывает инерционности некоторых типов плавких вставок и уменьшения тока перегрузки в процессе пуска и самозапуска электродвигателей. Поэтому номинальный ток плавкой вставки, выбранный согласно (2-4), получается, как правило, завышенным, вследствие чего предохранитель не защищает оборудование от перегрузки и является только защитой от коротких замыканий.

В жилых домах, бытовых и общественных помещениях, т. е. там, где сети не находятся постоянно под наблюдением квалифицированного персонала, плавкие вставки должны удовлетворять следующему условию [Л. 8]:

где Iдоп.пр.— длительно допустимый ток провода.

После выбора номинального тока необходимо убедиться, что плавкая вставка надежно защищает участок сети, на котором она установлена. При коротком замыкании в наиболее удаленной точке сети плавкая вставка должна надежно и быстро перегорать. Кратность тока однофазного короткого замыкания в сетях с заземленной нейтралью и двухфазного короткого замыкания в сетях с изолированной нейтралью должна быть не менее 3 по отношению к номинальному току плавкой вставки.

В сетях, защищенных только от коротких замыканий, допускается не выполнять расчетной проверки тока короткого замыкания для оценки надежности перегорания плавкой вставки, если ее номинальный ток превышает длительно допустимый ток защищаемого участка сети не более чем в 3 раза.

г) Особенности выбора плавких вставок в сетях 380—500 В

К выбору предохранителей, защищающих электродвигатели напряжением 380 и 500 В, предъявляется дополнительное требование, чтобы время перегорания плавкой вставки не превышало 0,15—0,2 с [Л. 96]. Это требование определяется следующими соображениями: на электродвигателях 380 и 500 В последовательно с плавкими предохранителями устанавливаются контакторы и магнитные пускатели, с помощью которых осуществляются пуск и остановка электродвигателей. Эти аппараты удерживаются во включенном положении специальными электромагнитами (см. гл. 11), которые питаются от напряжения сети.

При исчезновении или понижении напряжения, например, вследствие короткого замыкания магнитные пускатели и контакторы отпадают. При коротком замыкании в электродвигателе плавкая вставка должна перегореть раньше, чем отпадет магнитный пускатель или контактор. В противном случае контакты магнитного пускателя или контактора будут размыкать ток короткого замыкания, на что они не рассчитаны.

Как показали специальные испытания и опыт эксплуатации, если время перегорания плавкой вставки не превышает 0,15—0,2 с, то может происходить лишь небольшое оплавление контактов, позволяющее вновь включить контактор. Замены контактов при этом не требуется.

По защитными характеристикам плавких вставок можно определить, что они перегорают за время 0,15—0,2 с при токах короткого замыкания, превышающих в 10— 15 раз номинальный ток плавкой вставки:

Величина тока короткого замыкания на выводах электродвигателя зависит от мощности питающего трансформатора, длины и сечения соединительного кабеля.

На рис. 2-2 в качестве примера построены кривые для определения тока трехфазного короткого замыкания в сети 380 В, питающейся от трансформатора мощностью 750 кВ*А (uK = 8%) при разной длине и сечении кабеля, имеющего медные жилы.

В случае, если электродвигатель питается от групповой сборки, расчетная длина кабеля определяется по следующему выражению:

где lк.дв — длина кабеля, питающего электродвигатель; lк.сб — длина кабеля, питающего сборку; sK. дв, sK сб — соответственно сечения кабелей двигателя и сборки.

На том же графике (рис. 2-2) построена прямая 1 для определения допустимого номинального тока плавких вставок типов НПН, НПР, ПР1 согласно (2-8) в зависимости от величины тока короткого замыкания при tп.п. 0,2 с.

С помощью кривых, приведенных на рис. 2-2, выбор плавкой вставки для электродвигателей 380 В, удовлетворяющей условию (2-7), может быть выполнен в следующей последовательности:

а) По известной длине и сечению кабеля, питающего электродвигатель, определяется ток трехфазного короткого замыкания на его выводах. При наличии групповой сборки определяется расчетная длина кабеля согласно (2-8).

б) Из точки А, определяющей величину тока короткого замыкания, проводится линия до пересечения с прямой 1. Точка Б определяет номинальный ток плавкой вставки, удовлетворяющий условию (2-7).

Если величина тока короткого замыкания превышает 2 000 А, Iвс.ном следует выбирать максимально допустимым по условию согласования действия предохранителя с магнитным пускателем или контактором (Iвс.ном = 200 А).

Таким образом, номинальный ток плавкой вставки, устанавливаемой на электродвигателях 380—500 В или па личин, питающей группу двигателей, выбирается по условиям (2-3), (2-4), (2-7) и принимается ближайшим большим по шкале стандартных номинальных токов.

Если Iвс.ном , определенный согласно (2-4), превышает 200 А, необходимо устанавливать автоматические выключатели, так как плавкая вставка с номинальным током 200 А является предельной по условию селективности работы контактора и предохранителя.

д) Селективность

Одно из основных условий выбора предохранителей обеспечение селективности их действия между собой и с релейной защитой.

Это означает, что в случае повреждения, например, одного из электродвигателей (в точке К на рис. 2-3) должен перегореть только предохранитель П3 и не должны перегорать предохранители П1, и П2, а также не должна срабатывать релейная защита РЗ, установленная на выключателе. Иначе говоря, для правильной ликвидации повреждений все последовательно установленные предохранители и релейная защита должны быть селективны.

Для проверки селективности необходимо сопоставить характеристики плавких вставок во всем диапазоне токов, возможных как при перегрузках, так и при коротких замыканиях.

Защитная характеристика предохранителя может быть задана заводом-изготовителем в двух видах: либо как полное время отключения, равное сумме времен плавления вставки и горения дуги, либо отдельно как время плавления и время горения дуги. Строго говоря, при проверке селективности двух последовательно включенных предохранителей следовало бы сравнивать время плавления вставки, установленной ближе к источнику питания, с полным временем отключения вставки, установленной дальше от источника питания. На практике же обычно используют одинаковые характеристики полного времени отключения, поскольку время

горения дуги невелико, а разбросы времени плавления и отключения перекрывают неточность расчетов.

При выполнении расчетов следует учитывать возможный разброс характеристик из-за отклонения размеров вставки, состояния контактов и поверхностей вставок, температуры окружающей среды и других факторов. Разброс защитных характеристик предохранителей на напряжение ниже 1 000 В достигает 50%. Такой разброс и следует принимать при проверке селективности плавких вставок.

Для проверки селективности заводские характеристики плавких вставок перестраивают в расчетные, как показано на рис. 2-4. Возможные времена отключения при определенных токах находятся в пределах области, ограниченной построенными кривыми. В соответствии с возможной погрешностью ±50% селективность между двумя смежными предохранителями обеспечивается, если определенное по заводской характеристике время перегорания большего предохранителя не менее чем в 3 раза превышает время перегорания по характеристике меньшего предохранителя [Л. 8, 13].

В наиболее распространенных случаях допускается принимать пониженное значение разброса времен отключения ±25 %, допуская при этом в редких случаях возможность неселективной работы предохранителей. В этом случае селективность между смежными предохранителями обеспечивается, если определенное по заводской характеристике время перегорания большего предохранителя не менее чем в 1,7 раза превышает время перегорания по характеристике меньшего предохранителя [Л. 40].

При анализе характеристик однотипных предохранителей селективность следует проверять при максимальном токе трехфазного короткого замыкания. Если селективность при этом токе обеспечена, она будет обеспечена и при всех меньших значениях токов.

У разнотипных предохранителей селективность следует проверять во всем диапазоне токов — от тока трехфазного короткого замыкания в месте установки дальнего предохранителя до поминального тока вставок.

Если защитные характеристики плавких вставок неизвестны, рекомендуется метод согласования характеристик предохранителей, основанный на сопоставлении площадей сечения плавких вставок с учетом материала, из которого они изготовлены [Л. 13].

Для проверки селективности по этому методу необходимо знать тип, материал и площадь сечения плавких вставок, между которыми производится согласование. Если площадь сечения плавкой вставки 1, расположенной ближе к источнику питания, s1, а вставки 2, расположенной дальше от источника питания, s2, то определяется отношение этих площадей

Полученное значение а сравнивается с данными табл. 2-1. Если а равно или больше величины, приведенной в таблице, то селективность между рассматриваемыми предохранителями обеспечивается.

Для оценки селективности действия двух последовательно включенных предохранителей можно также руководствоваться следующим правилом [Л. 13]. Для двух однотипных предохранителей, установленных в сети напряжением до 1000 В, селективность будет обеспечена, если их вставки отличаются не менее чем на две ступени шкалы номинальных токов.

Для селективного действия последовательно установленных вставок высокого напряжения типа ПК необходимо, чтобы их номинальные токи различались не менее чем на одну ступень шкалы.

При проверке селективности вставок по их защитным характеристикам в сети напряжением выше 1000 В следует иметь в виду, что их разброс регламентируется следующим образом: для любого времени отключения отклонения в величине тока не должны превосходить 20%. Построение расчетных характеристик для таких предохранителей показано на рис. 2-5.

При проверке селективности предохранителей, установленных на разных сторонах трансформатора, следует учи тывать, что по предохранителям будут проходить токи разной величины.

С учетом этого условие селективности (2-9) приобретает следующий вид:

где — коэффициент трансформации трансформатора. е) Выбор плавких вставок в схемах вторичных цепей

Номинальный ток плавкой вставки, устанавливаемой в цепях оперативного тока или во вторичных цепях трансформаторов напряжения, принимается согласно следующему выражению:

где IH — максимальный ток нагрузки.

Ток IH может быть определен непосредственным измерением в режиме, когда включены все реле и приборы, которые могут одновременно питаться от данных цепей напряжения или оперативного тока. Величину максимального тока нагрузки можно также определить расчетом по известным величинам потребления каждого реле и прибора.

Например, для трансформатора напряжения, к зажимам вторичной обмотки которого, соединенной в звезду, подключены реле и приборы на фазные и междуфазные напряжения, максимальный ток нагрузки может быть с некоторым запасом определен по следующему выражению [Л. 86]:

где Рф — потребление нагрузки, подключенной на фазные напряжения, В*А; —соответственно наибольшее и наименьшее потребление нагрузки, подключенной между двумя фазами, В*А; Uф — фазное напряжение, В.

Для надежного сгорания вставки в случае короткого замыкания отношение тока короткого замыкания к ее номинальному току должно быть не меньше 5—10.

Плавкие предохранители в цепях электромагнитов включения устанавливаются для защиты последних от длительного прохождения тока. Номинальный ток этих вставок принимается равным 0,3—0,4 максимального тока, проходящего в цепи включения.

Условия выбора плавких предохранителей

В наше время все большей популярностью пользуются автоматические выключатели (АВ) как иностранных так и отечественных производителей, это в первую очередь связано с тем, что у АВ отсутствуют недостатки предохранителей. Но не смотря на все свои недостатки, предохранители все еще активно используются, так как это наиболее дешевый вариант защиты присоединения.

Например у нас на предприятии, если заказчик не возражает, для защиты двигателей мощностью до 100 кВт, применяются разъединитель-предохранитель, учитывая что короткое замыкание не такое частое явление, предохранитель – это очень хорошее решения для защиты присоединения.

В связи с этим, в этой статье я расскажу как нужно правильно выбирать предохранители с плавкими вставками в соответствии с ПУЭ и другой справочной литературой, чтобы Ваши предохранители срабатывали только при ненормальных режимах работы электроприемников.

При выборе предохранителя, должны выполняться условия:

  • номинальное напряжение предохранителя должно соответствовать напряжению сети:

Uном = Uном.сети (1)

  • номинальный ток отключения предохранителя должен быть не меньше максимального тока к.з. в месте установки:

Iном.откл > Iмакс.кз (2)

Условия выбора плавких вставок:

  • ток плавкой вставки должен быть больше максимального тока защищаемого присоединения:

Iн.вс. > Iраб.макс. (3)

  • при защите одиночного асинхронного двигателя, выбирается ток плавкой вставки с учетом пуска двигателя:

Iн.вс. > Iпуск.дв/k (4)

k – коэффициент, принимается равным 2,5 согласно [Л1. с. 124,125], что соответствует ПУЭ пункт 5.3.56, для электродвигателей с короткозамкнутым ротором при небольшой частоте включений и легких условиях пуска (tп=2-2,5 сек.).

Обычно данный коэффициент принимается для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.

Для двигателей с тяжелыми условия пуска (tп > 10-20 сек.), например для двигателей мешалок, дробилок, центрифуг, шаровых мельниц и т.п. А также для двигателей с большой частотой включений, т.е. для двигателей кранов и других механизмов повторно-кратковременного режима, коэффициент k принимается равным 1,6 – 2.

Для двигателей с фазным ротором коэффициент k принимается равным 0,8 – 1.

При выборе тока плавкой вставке по условию (4), следует учитывать, что с течением времени защитные свойства вставки ухудшаются, из-за этого есть вероятность ложных сгораний плавкой вставке при пусках двигателей. В результате двигатель может вообще не запуститься, либо работать на 2-х фазах, что приводит к перегреву двигателя.

И если не предусмотрена защита от перегрузки, двигатель может выйти из строя.

Решением данной проблемы, является выбор большего тока плавкой вставки, чем по условию (4), если это допустимо по чувствительности к токам КЗ.

При защите сборки, ток плавкой вставки выбирают по трем условиям:

  • по наибольшему длительному току:

  • при полной нагрузке сборки и пуске наиболее мощного двигателя:

  • при самозапуске двигателей:

где:
k – коэффициент, учитывающий условия пуска двигателя;

— сумма пусковых токов самозапускающих двигателей;

— сумма максимальных рабочих токов электроприемников, кроме двигателя с наибольшим пусковым током Iпуск.макс.;

Для проверки надежного срабатывания предохранителя в конце защищаемой линии, нужно выполнить на кратность тока кз и учитывать время отключения.

В справочной литературе, Вы можете встретить такое утверждение, что для надежного и быстрого перегорания плавкой вставки, требуется чтобы при КЗ в конце защищаемой линии обеспечивалась необходимая кратность тока короткого замыкания, т.е отношение тока короткого замыкания Iкз к номинальному току плавкой вставки Iн.вс.

Данное условие было взято, еще со старого ПУЭ образца 1986 г пункт 1.7.79 ( для невзрывоопасной среды: kкз = Iкз/Iн.вс (kкз >3), данный пункт в ПУЭ 7-издания был изменен, и теперь нужно учитывать время отключения в системе TN, согласно таблицы 1.7.1.

Для взрывоопасной среды, согласно ПУЭ 7-издание пункт 7.3.139, должно выполнятся условие кратности тока кз: kкз = Iкз/Iн.вс (kкз >4). Данный пункт остался без изменения, если сравнивать с ПУЭ 1986 г, что весьма странно, если учитывать что изменился пункт 1.7.79.

Если Вам неизвестны значения пусковых токов двигателя, то в порядке исключений, можно выбрать номинальные токи плавких вставок для двигателей мощность до 100 кВт и частотой пусков не более 10-15 в час следующим образом [Л2. с. 15]:

  • при Uн.сети = 500 В Iн.вс = 4,5*Рн;
  • при Uн.сети = 380 В Iн.вс = 6*Рн;
  • при Uн.сети = 220 В Iн.вс = 10,5*Рн.

После того как Вы выбрали предохранитель, нужно выполнить проверку селективности (избирательности) последовательно включенных между собой предохранителей с учетом защитных характеристик.

Это означает, что при коротком замыкании должна перегореть только та плавка вставка и того предохранителя, который находиться ближе всего к месту повреждения. Как показывает практика, для обеспечения селективности между двумя последовательно включенными предохранителями. Нужно чтобы предохранители между собой отличались на две ступени по шкале номинальных токов. При этом вставки, должны иметь одинаковые защитные характеристики, поэтому нужно выбирать предохранители одного типа.

Вот в принципе и все, что Вам нужно знать про выбор плавких предохранителей, если данной информации Вам не достаточно, рекомендую ознакомится с литературой, которую я использовал при написании данной статьи. В следующей статье, я приведу примеры выбора плавких предохранителей для различных электроприемников.

1. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Энергоатомиздат, Ленинградское отделение, 1988 г. Выпуск 617.
2. Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.
3. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

Добавить комментарий