Импульсный трансформатор: принцип действия прибора, показатели, влияющие на работу

Импульсный трансформатор — виды, принцип работы, формулы для расчета

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) — важный элемент, устанавливаемый практически во всех современных блоках питания.

Различные модели импульсных трансформаторов

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

  • стержневом; Конструкция стержневого импульсного трансформатора
  • броневом; Конструкция импульсного трансформатора в броневом исполнении
  • тороидальном (не имеет катушек, провод наматывается на изолированный сердечник); Конструкция тороидального импульсного трансформатора
  • бронестержневом; Конструктивные особенности бронестержневого импульсного трансформатора

На рисунках обозначены:

  • A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В — катушка из изолирующего материала
  • С — провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Принцип работы

Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

Схема: подключение импульсного трансформатора

Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax — Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

  • Ψ — параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке ИТ, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, — перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L — перепад индукции;
  • µа — магнитная проницаемость сердечника;
  • W1 — число витков первичной обмотки;
  • S — площадь сечения сердечника;
  • l — длинна (периметр) сердечника (магнитопровода)
  • Вr — величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm — Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности ИТ полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Видео: подробное описание принципа работы импульсного трансформатора

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным ИТ идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Расчет импульсного трансформатора

Рассмотрим, как необходимо производить расчет ИТ . Заметим, КПД устройства напрямую связано с точностью вычислений. В качестве примера возьмем схему обычного преобразователя, в которой используется ИТ тороидального вида.

Схема преобразователя

В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Рн.

Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:

Необходимые для вычисления параметры:

  • Sc – отображает площадь сечения тороидального сердечника;
  • S – площадь его окна (как наитии это и предыдущее значение показано на рисунке);

Основные параметры тороидального сердечника

  • Вмакс – максимальный пик индукции, она зависит от того, какая используется марка ферромагитного материала (справочная величина берется из источников, описывающих характеристики марок ферритов);
  • f – параметр, характеризующий частоту, с которой преобразуется напряжение.

Следующий этап сводится к определению количества витков в первичной обмотке Тр2:

(полученный результат округляется в большую сторону)

Величина UI определяется выражением:

UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).

Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:

Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.

Диаметр используемого в обмотке провода вычисляется по формуле:

Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:

Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.

Что такое импульсный трансформатор и как его рассчитать?

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:

  • Тороидальный.
  • Броневой.
  • Стержневой.
  • Бронестержневой.

Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Читайте также:  Антенный разветвитель: разновидности делителей и сплиттеров, технические параметры, критерии выбора краба и кабеля

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Для чего служит импульсный трансформатор, типы и конструктивные особенности

Кратковременный импульсный режим работы некоторых электрических устройств служит для обеспечения генерирования больших величин мощности, а ее использование в течение короткого промежутка времени называется импульсным режимом.

Мощные импульсные трансформаторы ТПИ , применяемые для импульсных питающих источников служат для подачи электроэнергии во вторичные цепи. Они выполняют функцию согласующего элемента между генератором первичной сети и потребителем импульсного напряжения. ИТ изменяет уровень и полярность формируемого импульса.

Они служат для создания обратной связи в контурах импульсного устройства, применяются для изменения импульса и формирования его в прямоугольную форму, обладающую величиной напряжения с постоянным периодом действия и наиболее крутым фронтом, что соответствует более широкой сфере применения.

Распределение электрических цепей в зависимости от постоянного и переменного значения тока.

Сфера применения импульсных трансформаторов

Основное предназначение ИТ – работа в импульсных устройствах – это: генераторы на триодах, магнетроны, газовые лазеры и прочая устройства. ИТ также используются в качестве дифференцирующих трансформаторов.

Сфера применения ИТ – это практически вся радиоэлектронная аппаратура, включая телевизоры и компьютерные мониторы, они обязательны для блоков питания импульсного типа. Одна из важных функций – применение для стабилизации выходного напряжения в режиме работы устройств.

Они служат для осуществления защиты от короткого замыкания потребителей в режиме ХХ (холостого хода) и защищают устройство от превышения значения напряжения или при перегреве корпуса прибора.

Основные требования

  1. Функциональность – определение значений всех электрических параметров (мощность, напряжение и вид импульса)
  2. Эксплуатационные требования – надежность и высокая перегрузочная способность, стойкость к механическим повреждениям и климатическому состоянию, повышенная электрическая прочность.
  3. Технико-экономические требования – малые габариты и небольшие потери, трудозатраты при изготовлении зависят от свойств, предъявляемых к сфере использования.

Общие конструктивные схемы и типы импульсных трансформаторов

Различие конструктивных форм продиктовано широким диапазоном использования, зависит от мощности, напряжения и вида форм протяженности импульса, предназначения и эксплуатационных требований.

Основные типы обмоток и импульсных трансформаторов – это:

  1. Стержневой ИТ.
  2. Броневой.
  3. Бронестержневой.
  4. Тороидальный.

Основной тип форм поперечного сечения – круговая или прямоугольная, аналогичная силовым трансформаторам.

Обозначения в схемах:

l – длина магнитной линии средней величины;

l1, l2– внутренняя и наружная протяженность (длина) короткой и длинной линии;

h– длины обмоток, цифровой индекс обозначает катушку,

h – ширина окна для стержневых и броневых схем и длина ярма для тороидальных МС.

Δ – толщина катушки, с цифровым индексом – толщина изоляционного материала между двумя обмотками.

a, b, c – стороны сечения прямоугольного МС и диаметр круглого МС;

S и S1–геометрическая и рабочая площадь сечений МС;

ka – коэффициент наполнения сечения электротехнической листовой или ленточной сталью;

w – витки обмотки;

λ – коэффициент использования протяженности МС.

Рис. №1. Конструктивная схема стержневого импульсного трансформатора.

Главная особенность импульсного трансформатора– небольшое количество витков в обмотках. Самыми экономичными считаются тороидальные ИТ, а менее всего – бронестержневые ИТ

Рис. №2. Схема обмотки броневого ИТ.

Рис. №3. Схема обмотки бронестержневого ИТ.

Рис. №4. Конструктивная схема ИТв виде торроида.

Рис. №5. Прямоугольное сечение ИТ поперечного плана.

Рис. №6. Поперечное сечение ИТ кругового типа.

Характерная особенность конструкции импульсного трансформатора

Основное свойство цилиндрической обмотки – невысокая индуктивность рассеяния. Обмотки отличаются простотой конструкции и прекрасной технологичностью. Они могут иметь различное число и расположение слоев и секций, отличаются схемами соединений. В конструкции используется трансформаторное и автотрансформаторное подключение обмоток.

Схема автотрансформаторного подключения используется в случаях, когда нужно снизить индуктивность рассеяния ИТ. Конструкция обмоток может состоять из нескольких слоев, они могут быть однос, и находиться на одном или на двух стержнях МС. Более часты в использовании однослойные обмотки, они простые в плане конструктивного устройства, отличаются большей надежностью. Индуктивность рассеяния достигается за счет наиболее полного использования длины МС обмотки, их располагают на 2-х стержнях.

Какие бывают обмотки

  1. Спиральные обмотки – соответствуют ИТ с минимальной индуктивностью рассеяния, рекомендованы к применению при автотрансформаторном включении. Их намотка осуществляется широкой и тонкой фольгой или токопроводящей лентой.
  2. Конические обмотки – служат для значительного уменьшения индуктивного рассеяния ИТ с малым увеличением емкости обмоток. Особенность – толщина изоляционного слоя между двумя обмотками, она пропорциональна напряжению между отдельными витками «первички» и «вторички». Толщина увеличивается от начала обмоток к концу в соответствии с линейным законом.
  3. Цилиндрические обмотки – обладают невысокой индуктивностью рассеяния, отличаются простой конструкцией и технологичностью.

Что такое потери энергии импульсного трансформатора?

Уменьшение энергетических потерь и создание эффективного КПД – важный вопрос, который стоит при проектировании ИТ. Общие потери суммируются из:

  • потерь на гистерезис;
  • вихревых токов;
  • потерь, связанных с несовершенством изоляции между листами;
  • магнитной вязкости.

Помимо упрощенного расчета и завышения значений существенных потерь, что компенсирует отказ от обоснования потерь и вносит грубые просчеты в расчет, применяют высоколегированные стали и перллои. Благодаря этому, с целью снизить потери, формы петли статического гистеризаса стараются приблизить к прямоугольной форме. Подобные материалы служат для достижения больших индукционных величин.

Вихревые токи разделяют искусственно и с помощью предусмотренных в конструкции магнитной системы (МС) участков с большой, или даже максимально увеличенной магнитной проницаемостью. Таким образом0 получается более-менее удовлетворительное стабильное значение вихревого тока в стальных листах МС.

Материалы для изготовления импульсного трансформатора

Тип магнитного материала оказывает влияние на качественные показатели и на особенности импульсного режима. Оценка материала осуществляется по величинам и показателям и включает следующие качественные показатели:

  • индукции насыщения;
  • коэрцитивная сила;
  • удельное сопротивление материалов устройства;
  • возможность использования наиболее тонких лент или листов стали.

Электротехническая сталь желательная для создания ИТ включает марки: 3405 – 3408 и 3421 – 3425. Сталь 3425 отличается самым высоким показателем индукции насыщения и малой величиной коэрцитивной силы, самый большой показатель прямоугольности петли гистерезисного цикла. Используется наиболее часто.

Пермаллой (прецизионный сплав), который обладает магнито-мягкими показателями, обычно состоит из никеля и железа, как правило, обработан легирующими компонентами.

Ферриты – еще один материал, который востребован для ИТ с небольшой длительностью трансформированных импульсов, эти МС обладают необыкновенно высоким удельным сопротивлением и полным отсутствием потерь на вихревые токи. Они используются для ИТ с диапазоном импульсов, размер которых определяется в наносекундном диапазоне времени.

Что такое критерий осуществимости импульсного трансформатора

Создание ИТ зависит от искажения изменяемого трансформатором импульса и параметров цепи трансформатора и самого ИТ. Уменьшение удлинения импульсного фронта пропорционально делает большое снижение величины напряжения на вершине импульса и в обратном порядке.

Нелинейные показатели сопротивления способствуют снижению искажений импульса по фронту и по величине, что крайне нежелательно. Искажения необходимо свети к минимуму, происходит это за счет снижения величины коэффициента рассеяния, решение подобного вопроса в выборе соответствующего ИТ с наименьшим коэффициентом рассеяния. Критерий осуществимости выводится при определении параметров цепи трансформатора. Желательно обладание трансформаторной цепью индуктивной реакцией.

Коррекция искажений формы импульса

Не всегда представляется возможным выбрать ИТ, чтобы искажение формы импульса не превышали пределов допустимых. В этом случае для коррекции формы импульса вводят корректирующие двухполюсники или демпфирующие фильтры, состоящие из низкоомных резисторов. Таким способом устраняется выброс напряжения по фронту. В этих целях возможно использование подавляющего диода, его полярность выбирается в соответствии с полярностью напряжению выброса на срезе импульса.

Импульсный трансформатор считается самым важным элементом электронной схемы и несет наибольшую ответственность за ее бесперебойную работу. Он отличается высочайшей надежностью и практически никогда не выходит из строя. Расчет трансформатора индивидуален для всех схем. Вторичная обмотка его обязательно должна быть замкнута на потребительскую нагрузку, ее разомкнутое состояние относится к опасному режиму. Действующие параметры и каскад напряжения находятся в полной зависимости от сборки трансформатора, что влияет на качество схемы радиоэлектронного устройства.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Импульсный трансформатор

Импульсный трансформатор (ИТ) — это трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Особенностью работы импульсных трансформаторов является то, что на их первичную обмотку поступают однополярные импульсы, которые содержат постоянную составляющую тока, поэтому сердечник работает с постоянным подмагничиванием.

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной.

Импульсный трансформатор в чем основные отличие от обычного

У импульсного трансформатора (ИП) в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

  1. Размер — импульсного трансформатора обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.

Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Читайте также:  Уличные датчики движения для включения света: виды, принцип работы, схема подключения и особенности настройки

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Видео: Импульсный трансформатор

Импульсный трансформатор принцип работы

Принцип работы импульсных трансформаторов заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Видео: Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

Импульсные трансформаторы. Виды и особенности. Применение

Импульсные трансформаторы, служащие для передачи коротких импульсов с наименьшими искажениями и действующими в переходных процессах, используются в устройствах импульсного типа.

Импульсные трансформаторы дают возможность изменить уровень и полярность образуемого импульса тока или напряжения, согласовать сопротивление устройства, генерирующего импульсы, с сопротивлением потребителя нагрузки, а также разделить потенциалы приемника и источника импульсов, принимать на отдельных нагрузках импульсные сигналы только от одного генератора, создавать обратную связь в схеме импульсного прибора. Они также применяются в качестве преобразовательного компонента.

Создание мощных импульсов определенных параметров возможно только с использованием импульсных трансформаторов высокого напряжения. Форма импульсов на выходе зависит от свойств таких трансформаторов. Это актуально при значительном коэффициенте трансформации.

Использование повышающих импульсников дает возможность намного сократить габаритные размеры, массу и цену устройства, хотя это отрицательно сказывается на виде импульсов, так как увеличивается длина среза, фронта и неравномерность формы вершины. Значение коэффициента трансформации повышается до 20 при длине импульсов в несколько десятков микросекунд.

Сфера использования

Основная область использования импульсных трансформаторов – это импульсные устройства: газовые лазеры, генераторы на триодах, дифференцирующие трансформаторы, магнетроны и т. д.

Многие современные радиоэлектронные устройства не обходятся без таких видов трансформаторов. Они применяются в импульсных источниках питания, компьютерах, современных телевизорах. Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Требования
Конструктивно импульсные трансформаторы выполняются с предъявлением большого комплекса требований, которые делятся на:
  • Технико-экономические.
  • Эксплуатационные.
  • Функциональные.
Технико-экономические требования
  • Наименьшие потери энергии.
  • Габаритные размеры.
  • Вес.
  • Цена.
  • Трудоемкость изготовления.
  • Доступность технологии.
  • Возможность применения в устройстве доступных материалов.

Степень исполнения этих требований зависит от свойств используемых материалов, а также уровня технологического процесса. Из материалов могут применяться разные диэлектрики, проводники, магнитные и различные конструкционные материалы.

Такие требования обладают некоторой условностью, так как могут значительно изменяться в зависимости от обстоятельств. Например, если единственным приемлемым методом с технической точки зрения создания импульсов определенных параметров является использование импульсного трансформатора, то технико-экономические показатели уже не будут иметь такой важности.

Эксплуатационные требования

Высокая надежность в работе является одним из важных эксплуатационных требований, которые предъявляются к импульсным трансформаторам.

Их надежность определяется следующими параметрами:
  • Прочность электрических материалов.
  • Устойчивость к воздействию климатических факторов.
  • Устойчивость к механическим повреждениям.
  • Термостойкость.
  • Перегрузочная способность в аварийном режиме.
Функциональные требования

Эти требования относятся к величинам главных электрических параметров: форма и мощность импульса, напряжение. На практике не всегда представляется техническая возможность обеспечить все требования функциональности.

Конструкция и виды
Разнообразие видов и конструктивных особенностей обусловлено широкой популярностью импульсных трансформаторов, и зависит от следующих факторов:
  • Вид формы импульсов.
  • Мощность.
  • Напряжение.
  • Требования эксплуатации.
  • Назначение.
Импульсные трансформаторы бывают нескольких видов:
  • Стержневой.
  • Броневой.
  • Бронестержневой.
  • Тороидальный.

Распространенной формой сечения сердечника трансформатора является прямоугольная и круглая формы, подобные силовым моделям трансформаторов.

На схемах параметры трансформаторов имеют свои обозначения:

l – длина магнитной линии;
l 1, l 2 – наружная и внутренняя длина линии;
h – длина обмотки, цифра обозначает номер обмотки;
h – ширина окна стержневых и броневых модификаций, длина ярма тороидальных видов;
Δ – толщина обмотки, цифра обозначает толщину изоляции между обмотками;
А 1, А 2 – толщина обмоток;
a, b, c – размеры сечения сердечника;
S, S 1 – площадь сечений сердечника (рабочего и геометрического);
k a – коэффициент наполнения сечения сталью;
w – число витков в катушке;
n – коэффициент трансформации;
λ – коэффициент использования длины сердечника.

Стержневые импульсные трансформаторы

В этой модели обмотки охватывают магнитопровод. В таком устройстве легко изолировать и обслуживать обмотки, которые имеют возможность для хорошего охлаждения.

Броневые импульсные трансформаторы

Здесь обмотки охватываются магнитопроводом, и образуют своеобразную «броню». Такие модели устанавливают для маломощных устройств, они имеют меньше проводников обмоток.

Бронестержневой вид

Устройство этого вида представляет собой среднюю конструкцию между броневым и стержневым видом. Остальные параметры идентичны.

Тороидальные импульсные трансформаторы

Магнитопровод выполнен в виде фигуры тора. Трансформатор небольшой массы и размеров. Параметры достигают повышенной плотности тока, так как есть хорошее охлаждение обмотки. Намагничивание имеет низкие показатели.

Особенности конструкций

Основной особенностью импульсников является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые.

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

В устройстве трансформатора применяется два вида подключения обмоток: автотрансформаторный и трансформаторный.

При необходимости снижения индуктивности рассеяния применяют автотрансформаторное подключение. Обмотки могут иметь несколько слоев и находиться на разных стержнях. Популярными стали обмотки с одним слоем, так как они более надежны и просты. Небольшой индуктивности рассеяния добиваются путем наибольшего использования длины магнитопровода для обмоток, которые располагают на двух стержнях.

Виды обмоток
  • Спиральные . Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.
  • Конические . Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.
  • Цилиндрические . Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.
Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:
  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.
Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Что такое импульсный трансформатор и как его рассчитать

Импульсным трансформатором называется важная деталь, широко применяемая практически во всех радиоэлектронных приборах. Это телевизоры, мониторы компьютеров, все цифровые и аналоговые устройства. Трансформатор обеспечивает передачу импульсных сигналов. Вывод по сравнению с поданной на входе формой получается с минимальным искажением. В основном работают с прямоугольными импульсами.
В статье разобраны главные принципы работы импульсных трансформаторов, приведены характеристики и различия в их устройстве. В качестве бонуса в конце статье читатель найдет видео c наглядным разбором устройства и книгу Вдовина С. С. «Проектирование импульсных трансформаторов». Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.

Общие конструктивные схемы и классификация

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации.
Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:

  • стержневые;
  • броневые;
  • бронестержневые;
  • тороидальные.
Читайте также:  Порядок сборки самодельных сварочных инверторов своими руками, схемы и описание тестирования

Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.

Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.

Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.

Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ.

Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.

Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.

Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:

  • ИТ класса напряжения до 20 кВ;
  • ИТ класса напряжения до 100 кВ;
  • ИТ класса напряжения свыше 100 кВ.

В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.

Процессы трансформации импульсов

Одним из основных элементов импульсных источников питания является импульсный трансформатор. Особенность работы данного вида трансформатора заключается в том, что на вход подается периодическая последовательность импульсов одной полярности, содержащие постоянную составляющую тока.

Принцип действия импульсного преобразователя напряжения полностью идентичен работе любого другого трансформатора, то есть к обмотке первичной катушки индуктивности подается входное напряжение Uвх, которое в полном соответствии с законом электромагнитной индукции преобразовывается на обмотке вторичной катушки в напряжение выхода Uвых с измененными параметрами.

Коэффициент трансформации напряжения определяется соотношением витков намотки импульсного трансформатора для каждой катушки. Однако в отличие от обычных трансформаторов, работающих с синусоидальными гармониками стандартной частоты 50 Гц, на вход ИТ подаются импульсы длительность несколько десятков мкс, что соответствует частотам в пределах десятков кГц.

Обычно это электромагнитные сигналы после выпрямления переменного сетевого тока по полумостовым, мостовым или другим схемам, используемым в электронных преобразователях напряжения.

Особенности конструкции

Сердечники импульсных преобразователей имеют тороидальную или Ш-образную форму. При выполнении намотки импульсного трансформатора своими руками мастера предпочитают кольцевую (тороидальную) конфигурацию магнитопровода, поскольку для него не нужно специально готовить каркас и приспособление под намотку. Для изготовления сердечников используются материалы с повышенной магнитной проницаемостью типа:

  • ферритов;
  • трансформаторной кремнистой стали;
  • пермаллоя.

Ферритовые кольцевые сердечники широко распространены, дешевы и доступны. Обозначение изделия выполняется по типу К Dxdxh, где К – сокращение от слова «кольцо», D, d и h – соответственно, размеры внешнего и внутреннего диаметров кольца, высоты кольца. Размеры обозначают в мм, например, К 28×16х9.
На ферритовом основании наматываются первичная и вторичная обмотки.

Ключевой особенностью конструкции является намотка первичной обмотки против часовой стрелки, вторичной – только по часовой. При изменении направления намоток мощность устройства значительно уменьшается. Обмотки наматываются с обеих сторон кольца, на внутренней стороне – с малым числом витков, на внешней – с большим количеством витков.

Для снижения индуктивности рассеивания считают необходимым наматывать двуслойно одну обмотку, а между ее слоями помещать другую обмотку. Иногда обмотки мотают двумя проводами одновременно, тогда провода витков одной обмотки располагаются между проводами витков другой.

Как проверить устройство

После сборки ИТ, его проверяют. Методик, как проверить собранный собственноручно или приобретенный импульсный трансформатор, предостаточно. Для проверки собирают схемы с использованием частотных генераторов, осциллографов, мультиметров и других приборов, которые не только подтверждают работоспособность ИТ.

Они выполняют его тестирование в различных частотных диапазонах. В импульсном трансформаторе не допускается разомкнутое состояние вторичной обмотки, такой режим относится к категории небезопасных режимов.

Также должны иметь минимальную индуктивность рассеивания, динамическую емкость и сопротивление; быть достаточно прочными механически.

Он должен обладать виброустойчивостью и выдерживать воздействие значительных электродинамических сил, возникающих как в нормальном режиме работы, так и, особенно, при коротких замыканиях цепи нагрузки.

Требования высокой электрической прочности и минимальной индуктивности рассеяния взаимно противоречивы. Так как для увеличения электрической прочности необходимо увеличивать толщину и изоляции, в то время как для уменьшения индуктивности рассеяния требуется уменьшать толщину.

Изоляция проводов и обмоток

Обмотки ИТ должны удовлетворять следующим основным требованиям: быть достаточно электрически прочными, изоляция обмоток должна выдерживать без повреждений длительное воздействие номинальных рабочих напряжений и кратковременное воздействие повышенных напряжений в возможных аварийных ситуациях.

Уменьшение емкости обмоток, в свою очередь, находится в противоречии с требованием минимальной индуктивности рассеяния. Однако в большинстве случаев уменьшение индуктивности рассеяния является более важной задачей, чем уменьшения емкости.

По этим причинам размеры изоляционных промежутков обычно доводят до возможного минимума, определяемого необходимой электрической прочностью обмоток. Уменьшить емкость стремятся применением изоляционных материалов с возможно меньшей диэлектрической проницаемостью, а также за счет конструктивных факторов.

Итак, главные требования к изоляционным материалам состоят в малой диэлектрической проницаемости и пригодности для режимов с высокой напряженностью электрического поля. При больших токах и длительности импульса применяют провода более экономичного прямоугольного сечения или тонкие и широкие медные шины из фольги, иногда из нескольких слоев, проложенных изоляцией.

Лучшие материалы для устройства

Практика конструирования ИТ показала, что лучшими изоляционными материалами, наиболее полно удовлетворяющим перечисленным требованиям, являются трансформаторное масло, кабельная и трансформаторная бумага, пропитанная трансформаторным маслом, электрокартон, пленки из фторопласта, чередующиеся со слоями бумаги, органическое стекло.

В качестве несущих элементов конструкции – бумажно-бакелитовые трубки и цилиндры, сборные каркасы из органического стекла. Фторопластмассовые пленки следует применять лишь в таких ИТ, у которых температура обмоток может превышать 95ºС.

Недостаток пленок в том, что по ним в продольном направлении легко развивается поверхностный разряд. Органическое стекло широко применяется в ИТ вследствие высоких изоляционных свойств и возможности механической обработки.

При напряжениях 100 кВ целесообразна изоляция в виде чистого трансформаторного масла. В отличие от слоистой чисто масляная изоляция в высокой степени однородна по свойствам. Это позволяет в конструкциях с ослабленным краевым эффектом практически полностью использовать высокие электроизоляционные свойства трансформаторного масла.

Диэлектрическая проницаемость трансформаторного масла примерно в два раза меньше, чем у изоляционной бумаги и электрокартона. Это позволяет во столько же раз уменьшить емкость обмоток ИТ. Важным эксплутационным достоинством масляной изоляции является также ее восстанавливаемость после кратковременных аварийных состояний (единичный пробой или искрение).

Легко осуществима также и замена масла при регламентных работах. Таким образом, при большой мощности и напряжении масляная изоляция является наиболее целесообразным типом изоляции в ИТ. Однако ее применение возможно только в специально разработанных конструкциях, в которых, обеспечена свободная циркуляция масла и отсутствуют пути для распространения поверхностного разряда.

Конструкция обмотки

Обмотки ИТ отличаются относительно небольшим числом витков. Однако напряжения на обмотках обычно измеряются десятками и сотнями киловольт, вследствие чего напряжение, приходящиеся на один виток обмотки (витковое напряжение), может составлять единицы, а в мощных ИТ – даже десятки киловольт.

Поэтому при конструировании обмоток ИТ приходится уделять особое внимание межвитковой изоляции обмоток. Для обеспечения требуемой электрической прочности межвитковой изоляции в обмотках ИТ используют провода с усиленной изоляцией, в основном марок ПЭВ-2, ПБ, ПБУ. Провода круглого сечения ПЭВ-2 обычно применяют в ИТ малой и средней мощности, а также во вторичных обмотках мощных высоковольтных ИТ.

Провода прямоугольного сечения ПБ, ПБУ, способны выдерживать межобмоточное напряжение 10 кВ, применяют в первичных обмотках ИТ средней мощности и в обеих обмотках весьма мощных ИТ.
В целом, рассматривая обмотки мощных высоковольтных ИТ, необходимо отметить следующее. Принципиальная необходимость малоискаженной трансформации весьма коротких импульсов вынуждает конструировать ИТ с очень малой индуктивностью рассеяния и емкостью обмоток.

Следовательно, с минимальным размером обмоток, в частности с минимальными размерами изоляционных промежутков. Для лучшего понимания предмета рекомендуем посмотреть видеоролик о том, как разобрать импульсный трансформатор.

Как намотать тороидальный трансформатор

При помощи наждачной бумаги стачиваем острые грани. Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку. Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным. Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок. Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки. Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05-0,1 мм. Наматываем начало обмотки так, чтобы надёжно закрепить место соединения. Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика). Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты.

Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно. На картинке вторичная обмотка, намотанная в четыре провода.

Заключение

Надеемся, теперь вам полностью понятен принцип работы трехфазных асинхронных двигателей. Для лучшего понимания вопроса предлагаем скачать книгу Вдовина С. С. “Проектирование-импульсных-трансформаторов”.

Вся самая новая информация по этой теме, а также по теме металлоискателей, размещена также в нашей группе в социальной сети «Вконтакте». Чтобы подписаться на групу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В нашей группе можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков.

В завершение объемной статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

Добавить комментарий