Инвертор напряжения: правила подбора устройства, основные технические характеристики

Преобразователи напряжения, инверторы 12 – 220 вольт

Для работы практически всей бытовой электроаппаратуры необходимо напряжения уровнем 220 В. В случае отсутствия стационарной электросети или же в условиях напряжения слишком низкого качества удобно использовать электроэнергию от аккумуляторных батарей. Такими батареями могут быть широкодоступные автомобильные аккумуляторы. Для согласования низкого постоянного напряжения аккумулятора 12 (24) В и переменного напряжения 220 В, требуемого для питания электроаппаратуры, используют специальные DC/AC преобразователи напряжения или инверторы.

Устройство инвертора

Простейший однофазный инвертор 12 220 В состоит из силовых электронных ключей (минимум два), повышающего трансформатора и системы управления, представленной в виде генератора импульсов (рис. 1). Такой преобразователь легко собрать своими руками.

Рис.1 Принципиальная схема преобразователя напряжения 12 220 В

На рис. 1 резистор R1 и конденсатор С1 являются задающей цепочкой, от которой зависит частота выходных импульсов. N-канальные полевые транзисторы, работающие в противофазе, поочерёдно коммутируют трансформатор Tr2 с источником питания, создавая на выходе положительную и отрицательную полуволны. В качестве силовых транзисторов можно использовать, например, управляемые логическим уровнем IRL2505 с допустимым максимальным током 104 А или другие аналогичные ключи. Трансформатор можно использовать из блока бесперебойного питания или намотать самостоятельно.
Более сложные инверторы содержат один или несколько повышающих импульсных DC/DC преобразователей, которые поднимают уровень напряжения от 12 В до

450 В. Далее повышенное постоянное напряжение преобразуется в переменное с последующей фильтрацией. В серийных инверторах обязательной является функция защиты от перегрузки, короткого замыкания, тепловая защита.

Выбор автомобильного инвертора

Мощность. Основная характеристика инвертора – максимальная мощность в длительном режиме работы. Маломощные инверторы до 300 Вт можно питать от прикуривателя. Например, инвертор Astra 150W-USB мощностью 150 Вт конструктивно имеет всего один разъём упомянутого типа (рис. 2).

Рис.2 Инвертор Astra 150W-USB

Более мощные инверторы кроме разъёма прикуривателя обычно снабжаются клеммами для подключения непосредственно к аккумулятору (рис. 3). Прямое подключение необходимо для сохранности проводки автомобиля, которая будет значительно перегружена при питании мощной нагрузки.

Рис.3 Инвертор EnerGenie EG-PWC-034 мощностью 800 Вт

Следует напомнить, что при мощности инвертора свыше 300 Вт (например, 1 кВт) и подключенной к нему маломощной нагрузке (например, ноутбук 60 Вт) такая система будет вполне нормально работать от прикуривателя. Прямое подключение к аккумулятору требуется только в случае нагрузки, превышающей предел 300 ВТ.
Мощность инвертора следует выбирать с запасом 20%÷30%. Также следует учитывать 5÷7 кратное повышение потребляемого тока устройствами с электродвигателями в момент пуска (холодильник, электродрель).
Особое внимание следует обращать на заявленную мощность самого инвертора. Зачастую на инверторах китайского производства указывается пиковая мощность, которую преобразователь может выдержать в течении нескольких секунд.
КПД. Чем выше КПД, тем меньше потери, а значит и больше время работы устройств, подключенных через инвертор. Величину времени работы можно посчитать по формуле:
Т=U*Ih*η/P
где Т – время работы от батареи; U – напряжение аккумулятора (например 12 В); Ih ёмкость в А*час; η – КПД, P – мощность нагрузки.
При питании одинаковой нагрузки от одинаковой батареи разными инверторами с КПД 0,95 и 0,85 в первом случае время работы будет почти на 12% больше. Заявленный КПД современных инверторов не ниже 90%.
Форма выходного сигнала. Более простые инверторы имеют прямоугольную форму выходного сигнала или же форму в виде так называемой аппроксимированной синусоиды (рис. 4). Наилучшей для нагрузки является форма практически неискажённой синусоиды – сигнал с уровнем коэффициента гармоник Советы по эксплуатации

  • Зачастую наилучший вариант работы инвертора – работа с номинальной нагрузкой. Не стоит перегружать устройство.
  • После соединения аккумулятора, инвертора и нагрузки первым следует включать инвертор. Затем остальные электроприборы.
  • Необходимо обеспечить хороший отвод тепла от корпуса инвертора. Как правило, термодатчик соединён именно с корпусом преобразователя.
  • Инвертор может работать от генератора автомобиля. В таком случае на время пуска двигателя автомобиля рекомендуется полностью отсоединять преобразователь. Обороты двигателя в холостом ходу должны быть повышены. Иначе энергии генератора для питания нагрузки может оказаться недостаточно и электричество будет расходоваться от аккумулятора.

Обзор инвертора напряжения 12-220 Вольт AVS Energy 2000w лучше посмотреть на видеоролике:

Выводы.

Итак, инвертор – необходимый элемент для построения простой системы автономного электропитания с использованием широко распространённых автомобильных аккумуляторов. Основные характеристики инвертора: мощность, КПД, форма выходного сигнала, наличие защит и сигнализация. Кроме подробно рассмотренных параметров немаловажным является гарантийный срок эксплуатации (1÷3 года) и популярность бренда на рынке электротехники.

Выбор инвертора (преобразователя напряжения)

Инвертором называют устройство, преобразующее постоянный ток в переменный, меняя при этом величину напряжения.

Инверторы, преобразующие 12 В или 24 В в 220 В, становятся все востребованнее – ведь сфер применения этим приборам много:

  • автопутешествия – в дороге через инвертор к автомобильному аккумулятору можно подключить необходимые приборы – холодильник, насос, электроинструмент;
  • использование в системах альтернативных источников энергии – к примеру, для потребления электричества, выработанного солнечными батареями;
  • организация резервного источника электроснабжения для домашних нужд. Простая связка автомобильный аккумулятор + инвертор при неожиданном отключении электричества как минимум поддержит освещение в доме. Такая схема, кстати, имеет очень большое распространение в соседнем Китае – там аккумуляторы с инверторами нередкие гости в домах;
  • на даче или при строительстве загородного дома, кода линия электричества еще не подведена, или ее в принципе нет, а бензогенератор ставить не хочется.

И это еще не все ситуации, когда инвертор облегчит вам жизнь.

Если вы уже задумались о покупке такого прибора, то следует разобраться – какие виды преобразователей напряжения бывают, и как подобрать оптимальный вариант под ваши нужды, не переплачивая лишних денег.

Первое, с чем нужно определиться – зачем вам нужен инвертор?

Самые простые, миниатюрные и маломощные инверторы, подключаемые в машинахк прикуривателю, организуют «обычную розетку» для подключения прибора небольшой мощности – зарядки телефона или ноутбука, подзарядки фонарика. При этом не нужно будет возить с собой ворох проводов, для питания каждого из устройств от прикуривателя. Вы просто будете подключать родной провод в организованную розетку.

Через автомобильный прикуриватель не стоит подключать инвертор с нагрузкой выше 150 Вт – можно вывести из строя всю электропроводку автомобиля и нарваться на дорогостоящий ремонт. Потребителей выше 150 Вт следует подключать только напрямую к аккумулятору, через клеммы.

К таким преобразователям можно подключить уже более мощные приборы. Для уменьшения потерь КПД и надежности, подключение мощных инверторов к клеммам аккумулятора следует проводить не «крокодильчиками», которыми иногда комплектуется прибор, а медными клеммами, под винт. Сечение и длину проводов подключения выбирайте исходя из расчета потерь тока, а не по нагреву.

Следующее, на что стоит обратить внимание – форма тока, которую выдает инвертор. Это важный момент, так как он определяет, какое оборудование вы сможете подключить к инвертору. Есть два вида:

  • чистая синусоида – токовая кривая в виде ровной синусоиды. К такому инвертору можно подключать любые приборы, без опасений за их сохранность. Недостатком этого типа можно назвать только высокую стоимость – для получения чистого синуса требуется сложная электрическая схема.

  • модифицированная синусоида – вид токовой кривой, напоминающей синусоиду, но на деле являющейся ступенчатой характеристикой. К инвертору с модифицированным синусом не стоит подключать: асинхронные двигатели, компрессоры, чувствительные к помехам устройства. Приборы даже если и будут работать при таком питании, но с заметным ухудшением качества – звуковая аппаратура будет «фонить», насосы и двигатели сильно греться и шуметь. Самое меньшее зло в этой ситуации будет – уменьшение КПД, большее (при постоянной эксплуатации) – их скорый выход из строя, из-за тяжелого режима работы.

Но это не значит, что инвертор с модифицированным синусом использовать не рекомендуется. Он не окажет негативного влияния на качество работы ламп освещения, нагревательных приборов, оборудования с импульсными блоками питания (ноутбуки, телефоны), большинство телевизоров, электроинструмент с коллекторными двигателями (лобзики, дрели). Однако для обеспечения работы электроинструмента от инвертора лучше докупить устройство плавного пуска – чтобы пусковые токи не выходили за пределы допустимого.

При выборе инвертора обязательно нужно продумать, что вы хотите к нему подключать, и уже после этого решать – готовы вы платить за устройство с чистым синусом, или оптимальной покупкой для вас будет менее дорогое устройство с модифицированной синусоидой.

Все преобразователи напряжения обладают двумя характеристиками по мощности –постоянная мощность и пиковая мощность прибора. Нужно различать эти два параметра.

Постоянная мощность говорит о том, с какой нагрузкой сможет справляться инвертор в длительном режиме работы. В зависимости от потребностей, можно подобрать устройство как невысокой мощности от 60 до 1000 Вт, так и серьёзный агрегат с мощностью от 1000 Вт и выше, позволяющий организовать мини-электростанцию на выезде.

Постоянную мощность необходимо выбирать таким образом, чтобы оставался запас, хотя бы 20 % – ни одно устройство не будет работать хорошо на пределе своих возможностей, поэтому не экономьте на этом моменте. Также не следует забывать о возможностях аккумулятора, ведь его емкость ограничена.

Пиковая мощность определяет предельную кратковременную нагрузку – от 150 до 10000 Вт. К примеру, пусковой ток холодильника, подключаемого к инвертору, как правило, в несколько раз выше номинальной мощности – это следует учитывать. Если вы не рассчитаете мощность инвертора для покрытия пускового тока, то прибор-потребитель не сможет начать работать.

Если инвертор будет работать от аккумулятора не снятого, а работающего от генератора машины, помните, что ток нагрузки инвертора не должен превышать выдаваемого тока генератора.

На деле подбор подходящей мощности не так уж и сложен, рассмотрим пример.

Подключаемая нагрузка: холодильник (15 Вт), зарядка ноутбука (80 Вт), зарядка телефона (60 Вт). Здесь, конечно, следует учесть пусковой ток холодильника, превышающий номинальный в 3-4 раза. Получится, что в момент включения холодильник потребит (в худшем случае) до 60 Вт. В итоге имеем, что для означенной нагрузки нам хватит инвертора в 300 Вт.

Конечно, не все инверторы работают с высоким КПД, при расчете мощности следует плюсовать к нагрузке еще возможные потери в кабеле, в зажимах и прочее – но вцелом видно, что для обеспечения минимально необходимых нужд сильно мощный инвертор не нужен. В большинстве случаев для комфортного туризма хватит прибора мощностью до 600 – 700 Вт, то есть с суммарным током нагрузки около 50 А, что гораздо меньше тока стандартного генератора на современных машинах.

Читайте также:  Греющий кабель для водопровода: свойства, применение внутри трубы, монтаж теплой системы для обогрева водопровода

Другой расклад получается, если вы захотите использовать инвертор для подключения электроинструмента – лобзиков, дрелей и др. Здесь уже целесообразно использование мощных инверторов – от 1 кВт и выше.

Преобразователи напряжения бывают различного уровня входного напряжения. Устройства до 2,5-3 кВт как правило работают от входного напряжения 12 В. Более мощные устройства, рассчитанные на выдачу нескольких киловатт, выпускаются на более высокие уровни напряжения – 24 и 48 В. Поэтому, выбирая инвертор, обратите внимание не только на мощность, но и на параметры входного напряжения:

  • максимальное входное напряжение от 12 до 30 В
  • минимальное входное напряжение от 9,2 до 24 В

Практически все инверторы оборудованы теми или иными видами защит, которые следят за параметрами работы, и помогают избежать критических ситуаций, действуя на отключение или звуковой сигнал:

Для подключения нагрузки у преобразователей напряжения могут быть предусмотрены различные выходы:

Устройство с необходимыми вам типами и количеством выходов выбирайте исходя из того, какое оборудование нужно подключить. Выходы постоянного тока с уровнем напряжения 12 – 28 В понадобятся для подключения специального автооборудования: магнитол, ТВ-приемников, подогрева сидений, автохолодильников). USB-порты пригодятся для подзарядки мобильных устройств. Выходы в виде розеток потребуются для «универсального» подключения электроприборов. При этом типы розеток могут быть различны:

Также встречаются преобразователи напряжения, не рассчитанные на подключение потребителя 220 В, и преобразующие 24 В в 12 В и 12 В в 24 В – у таких устройств розеток нет.

Длина кабеля инвертора может достигать 100 м. С одной стороны, кабель длиной 10-100 м – это удобно: обеспечивает мобильность устройства, его можно переносить, не трогая аккумулятор. С другой стороны, не стоит забывать, что каждый кабель является слабым звеном электросистемы, так как на нем происходят потери мощности. Поэтому не стоит гнаться за длиной кабеля. Лучше обратите внимание на его качество – чем толще кабель, тем выше его сечение и меньше потерь электричества он будет создавать. Чем гибче кабель – тем качественнее его материалы и меньше вероятность повреждения от загибов.

Инверторы выпускаются в корпусах из различных материалов:

С точки зрения пассивного охлаждения лучше всего инверторы в алюминиевом корпусе – он обеспечивает максимальный отвод тепла. Но для инверторов с активным охлаждением (вентилятором в корпусе), где проблема отвода тепла решена, лучшим вариантом будет корпус из стали – как более прочный. Комбинированные корпуса из алюминия+пластик или стали+пластик тоже хороший вариант, а вот корпус из одного пластика допустим только для маломощного прибора.

Устанавливать любой инвертор в машине необходимо так, чтобы обеспечивалось его охлаждение, то есть он не должен быть закрыт. Засунуть работающий инвертор в бардачок или в кейс – не лучший вариант.

В недорогом ценовом сегментедо 1400 рублей вы найдете инверторы небольшой мощности – до 200 Вт, с модифицированной синусоидой, рассчитанные на подключение к прикуривателю и питание мелких приборов.

В среднем ценовом сегменте от 1400 до 5000 рублей уже встретятся приборы помощнее – до 800 Вт, рассчитанные по большей части на подключение к аккумулятору, но все с той же модифицированной синусоидой.

В дорогом ценовом сегменте от 5000 и выше можно найти приборы как с чистым синусом, так и с модифицированным, но высокой мощности – до 5000 Вт.

Можно подвести итог: при выборе инвертора, не гонитесь за высокой мощностью прибора, т.к. все остальное оборудование может не вывезти такую нагрузку. Лучше обратите внимание на качество сборки, комплектующие и материалы. Стоить хороший качественный прибор даже средней мощности не будет дешево. Для некоторых видов оборудования подойдет инвертор только с чистым синусом на выходе. Не поленитесь рассчитать нагрузку перед подключением – и у вас не будет неприятных сюрпризов в последствии.

Инвертор напряжения: правила подбора устройства, основные технические характеристики

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ»

(ДГТУ)

Тема лекции: «Инверторы»

по дисциплине «электропитание и элементы

ЛЕКЦИЯ № 5

Тема лекции: «Инверторы»

1. Назначение, классификация, принцип действия и основные эксплуатационные характеристики инверторов.

2. Электромагнитные процессы и основные расчетные соотношения в транзисторном инверторе.

3. Электромагнитные процессы в тиристорном автономном инверторе тока.

1. Бушуев В. М., Деминский В. А. Электропитание устройств и систем телекоммуникаций: учеб. пособие для вузов. – М.: Горячая линия – Телеком, 2011. – с. 7 – 56.

Назначение, классификация, принцип действия

и основные эксплуатационные характеристики инверторов

Назначение инверторов. На практике часто возникает задача преобразования постоянного напряжения в переменное напряжение. Процесс преобразования постоянного тока в переменный получил наименование инвертирования, а устройства, осуществляющие это преобразование, называются инверторами. Термин “инвертирование” происходит от латинского слова invercio – переворачивание, перестановка. Впервые этот термин в преобразовательной технике был применен для обозначения процесса, обратного выпрямлению, и характеризовал процесс, при котором поток электрической энергии источника постоянного тока поочередно изменял свое направление на обратное таким образом, что в приемнике протекал переменный ток. Таким образом, устройства, преобразующие электрическую энергию постоянного тока в электрическую энергию переменного тока с постоянной или регулируемой частотой, называются инверторами.

Необходимость применения такого типа устройства возникает в следующих случаях:

– когда единственным источником электрической энергии в РЭС является химический источник тока, а некоторые приемники требуют для электропитания только переменного тока;

– при необходимости преобразовать переменное напряжение одной частоты в переменное напряжение другой частоты (более высокой);

– при необходимости повысить качество выпрямленного напряжения путем преобразования выпрямленного напряжения промышленной частоты в переменное напряжение повышенной частоты с последующим его выпрямлением для уменьшения коэффициента пульсаций (в ППН).

Физическая сущность процесса инвертирования постоянного тока состоит в том, что посредством применения полупроводниковых переключателей, соединенных в схему инвертирования, и соответствующим чередованием замкнутого и разомкнутого их состояния осуществляется такое подключение резистора нагрузки к источнику постоянного тока, которое обеспечивает изменение направления тока в этом резисторе, подобное протеканию по нему переменного тока. Путем такого преобразования создается возможность электропитания приемников переменного тока от первичного источника электрической энергии постоянного тока.

Классификация инверторов.Инверторы принято классифицировать по ряду признаков:

– по числу импульсов противоположной полярности за период выходного напряжения;

– по схеме преобразования (инвертирования);

– по числу фаз вторичной обмотки трансформатора;

– по типу применяемых переключающих вентильных устройств (ключей);

– по способу управления или коммутации переключающими устройствами.

По числу импульсов противоположной полярности за период выходного напряжения различают однотактные и двухтактные инверторы. В однотактных инверторах в приемник за период изменения выходного напряжения из первичной сети постоянного напряжения передается один импульс. В двухтактных инверторах за один период изменения выходного напряжения таких импульсов напряжения передается два.

Под схемой преобразования (инвертирования) понимают схему соединения вентильных элементов и элементов для их коммутации, а также трансформатора и в отдельных случаях входного или выходного фильтра. Работа инвертора и его технико-экономические показатели в основном определяются схемой инвертирования, от которой зависят: форма кривой выходного напряжения; форма кривой потребляемого тока; внешняя (или нагрузочная) характеристика; КПД инвертора; допустимое изменение коэффициента мощности нагрузки (указываемого обычно по основной гармонике напряжения на нагрузке); максимальное или мгновенное значения тока нагрузки, определяющие для большинства схем порог устойчивой работы инвертора.

На практике находят применение следующие схемы инвертирования:

– однофазная однотактная (рис. 5.1);

– однофазная двухтактная (рис. 5.2);

– однофазная мостовая (рис. 5.3);

– трехфазная однотактная с нулевым выводом (рис. 5.4, а);

– трехфазная мостовая (рис. 5.4, б).

В зависимости от требований, предъявляемых к инверторам со стороны их приемников, они могут быть с трансформаторным и бестрансформаторным (гальваническим) выходами. Как правило, трансформаторная схема применяется в тех случаях, когда необходимо изменить величину выходного напряжения относительно напряжения источника питания или обеспечить электрическую развязку цепей постоянного и переменного тока. Примеры схем обоих типов приведены на рис. 5.2, а, б.

По числу фаз вторичной обмотки трансформатора различают однофазные, двухфазные и трехфазные инверторы.

По типу переключающих вентильных устройств (ключей) различают транзисторные и тиристорные инверторы. Транзисторные инверторы применяют для получения выходной мощности от 20. 50 Вт до 1000 Вт. При большей выходной мощности (от 1 до 100 кВт и более), особенно при большом первичном напряжении применяются тиристорные инверторы.

В зависимости от способа управления или коммутации переключающими устройствами различают два основных класса инверторов:

– инверторы с самовозбуждением или автономные инверторы;

– инверторы с независимым возбуждением (ведомые сетью).

Автономный инвертор – это полупроводниковый инвертор, в котором коммутация полупроводниковых приборов осуществляется под действием напряжения, обусловленного элементами, входящими в состав полупроводникового инвертора (ГОСТ 23414-84).

Ведомый инвертор – это полупроводниковый инвертор, в котором коммутация полупроводниковых приборов осуществляется под действием напряжения, обусловленного внешними по отношению к полупроводниковому инвертору источниками электрической энергии (ГОСТ 23414-84).

Принцип инвертирования и схемы инвертирования. На схемах инверторов (рис.5.1,а – рис. 5.4) цифрами обозначены условные номера ключей-прерывателей. В однофазной однотактной схеме (рис. 5.1,а) при замыкании ключа S1 источник питания подключается непосредственно к нагрузке. При периодическом замыкании и размыкании ключа на приемнике получим импульсы напряжения прямоугольной формы (рис. 5.1,б). Длительность импульсов напряжения и их частота следования полностью определяется режимом работы ключа. Для выделения переменной составляющей напряжения в такой схеме целесообразно применить трансформатор.

Рисунок 5.1 – Однофазная однотактная схема инвертора (а)

и временная диаграмма выходного напряжения (б)

Аналогичным образом работает однофазная двухполупериодная схема с нулевым выводом (рис. 5.2, а, б). Различия состоят только в том, что ключи S1 и S2 замыкаются не одновременно, а поочередно таким образом, когда замкнутому состоянию ключа S1 соответствует разомкнутое состояние ключа S2 и наоборот, т.е. ключи работают в противофазе.

Рисунок 5.2 – Однофазные двухтактные схемы с нулевым выводом:

а) бестрансформаторная; б) трансформаторная;

в) временная диаграмма выходного напряжения

Если интервалы времени замкнутого и разомкнутого состояния ключей S1 и S2 одинаковы, то в нагрузке получим переменное напряжение прямоугольной формы.

В мостовой схеме инвертора (рис. 5.3) для получения переменного напряжения на выходе необходима одновременная коммутация двух ключей S1 и S4 или S2 и S3.

Рисунок 5.3 – Однофазная мостовая схема

Рисунок 5.4. Трехфазные схемы инвертирования:

а – с нулевым выводом; б- трехфазная мостовая схема

На рис. 5.4 представлены более сложные схемы, обеспечивающие преобразование постоянного напряжения в трехфазное.

Автономные инверторы тока и напряжения.В зависимости от характера протекания электромагнитных процессов в схемах автономных инверторов их дополнительно подразделяют на три основных типа:

Читайте также:  Электрический конденсатор: как работает и зачем нужен в цепи переменного и постоянного тока

Это разделение носит условный характер. За определяющий признак при этом принимается проводимость цепи постоянного тока со стороны непосредственно преобразующей части (например, со стороны тиристоров) относительно переменной составляющей выходного напряжения. Рассматривая далее простейшие схемы автономных инверторов (рис.8.5), нужно помнить, что на них показаны как бы механические ключи. Реально же используются электронные ключи, автоматически обеспечивающие самовозбуждение инверторов.

Рассмотрим автономные инверторы тока и напряжения, получающие питание от источника постоянного напряжения Ud (рис. 5.5). В цепи постоянного тока первого инвертора (рис. 5.5,а) включен дроссель Ld с большой индуктивностью. Наличие такого дросселя обеспечивает электромагнитную инерционность процесса изменения тока в неразветвленной части схемы в паузах между переключениями ключевых элементов S1. S4 ток можно условно считать неизменным, постоянным, а бросками тока в моменты переключения можно пренебречь.

Процесс коммутации в этих условиях и воспринимается как инвертирование тока, а само преобразовательное устройство называется инвертором тока.

В схеме (рис.5.5,б) источник постоянного напряжения подключен непосредственно к ключевым элементам, которые периодически с изменением полярности автоматически подключают это напряжение к приемнику. В результате приемник питается как бы от источника переменного напряжения. Такая схема классифицируется как инвертор напряжения. Ток приемника в этом случае должен носить обычно активный либо индуктивный характер (если на выходе инвертора не установлены специальные фильтры с конденсаторами). При емкостном характере нагрузки из-за скачкообразного изменения напряжения имеют место всплески токов, что ухудшает работу инвертора.

В резонансных инверторах, содержащих и конденсаторы, приемник, имеющий большую индуктивность, образует с емкостными элементами схемы инвертора колебательный контур с резонансом напряжений. При этом собственная частота контура должна быть выше или равна рабочей частоте инвертора. Такие инверторы имеют близкую к синусоидальной форму напряжения и тока в приемнике и применяются для получения переменного напряжения или тока повышенной частоты (более 1000 Гц).

Рисунок 5.5 – Автономные мостовые инверторы:

а – инвертор тока; б – инвертор напряжения;

в, г – временные диаграммы

Таким образом, сущность процесса инвертирования заключается в как бы периодическом подключении приемника или первичной обмотки трансформатора к источнику постоянного тока с одной и той же полярностью в однотактных или с противоположной полярностью в двухтактных схемах инверторов.

Характеристики инверторов. Основными характеристиками, которые позволяют сравнивать между собой различные схемы инверторов, являются:

а) зависимость величины выходного напряжения инвертора от величины напряжения питания постоянного тока при заданном токе приемника:

б) зависимость частоты выходного напряжения инвертора от величины напряжения питания при заданном токе нагрузки:

в) внешняя характеристика инвертора – зависимость выходного напряжения инвертора от величины тока приемника при неизменном напряжении питания:

г) выходное сопротивление инвертора (внутреннее), которое определяется по внешней характеристике инвертора:

где DUвых – изменение напряжения на выходе инвертора;

DIвых – изменение тока приемника инвертора.

д) величина выходной мощности инвертора Pвых;

е) коэффициент полезного действия инвертора.

Все указанные характеристики для реального инвертора могут быть получены экспериментальным путем.

Основные характеристики сварочного инвертора

На что следует обратить внимание при покупке сварочного аппарата ММА

Максимальный диаметр электрода

По своей сути – та же характеристика диапазона рабочего тока. Иногда по неграмотности или злонамеренно указывается диаметр электрода, которым заявленным максимальным током варить не получится. Иногда наоборот: указан максимальный диаметр электрода, явно не дотягивающий до значения заявленного сварочного тока.

Последний вариант изредка является проблеском совести поставщиков-обманщиков. В качестве максимального тока они указывают ток короткого замыкания. А максимальный рабочий диаметр электрода указывают все-таки честно.

Тип сварочного тока: постоянный (DC) или переменный (AC)

Варить постоянным (иначе прямым, по-английски – DC) током проще: легче удерживать дугу. Поэтому 99,9% современных инверторных аппаратов ММА выдают постоянный сварочный ток.

А вот среди трансформаторов раньше большинство составляли как раз аппараты переменного тока.

Переменный ток (по-английски – AC) используется для сварки цветных металлов. Но не аппаратами ММА, а аппаратами TIG. Поэтому сварочный инвертор ММА, выдающий переменный ток, — большая редкость.

Напряжение без нагрузки

После включения аппарата, до момента поджига дуги напряжение на кончике электрода существенно выше, чем во время работы. И чем оно выше, тем легче поджечь дугу. Но стандарты запрещают уровень напряжения холостого хода на аппаратах, выдающих прямой ток, свыше 100В.

Для еще большего сокращения рисков используют т.н. блоки VRD. Аппарат, снабженный VRD, имеет на кончике электрода до начала поджига дуги всего несколько вольт. И лишь при прикосновении к металлу напряжение холостого хода восстанавливается до уровня, необходимого для поджига дуги.

На всех электродах всегда указывается полярность подключения, тип сварочного тока (постоянный или переменный) и минимально требуемый для поджига уровень напряжения холостого хода. Для абсолютного большинства широко распространенных электродов он не превышает 60В.

Напряжение холостого хода, также как и сварочный ток, зависит от уровня входного напряжения. Чем ниже напряжение в источнике питания, тем ниже напряжение холостого хода. Поэтому по мере снижения напряжения питания поджиг электрода становится все сложнее.

Рабочий цикл, он же ПВ (период включения), он же ПН (полезная нагрузка)

ПВ указывается двумя цифрами. Первая – сила тока. Вторая – процент времени. Например, «130А-50%» означает, что данный аппарат током 130А может варить половину времени. А столько же будет простаивать в ожидании охлаждения до рабочей температуры. Если измерения проводятся на максимальном токе аппарата, первую цифру опускают, оставляя только показатель в процентах. Например, если аппарат с номиналом 160А имеет напротив «ПВ» запись «30%», это означает, что током 160 ампер он может работать 30% времени, а 70% будет остывать.

Все верно. Остается только добавить, что отечественный ГОСТ Р МЭК 60974-1-2004 не устанавливает единой обязательной методики измерения показателя ПН для аппаратов ММА.

«Стандарт не распространяется на источники питания для ручной дуговой сварки с ограниченным режимом эксплуатации, которые проектируются преимущественно для эксплуатации непрофессионалами»

Европейская методика, изложенная в стандарте EN60974-1, предлагает измерение на нагрузочном стенде при температуре окружающей среды 40С только до первого отключения ввиду перегрева. Полученный результат относят к 10-минутному промежутку. Получается, сработала термозащита через 3 минуты, цикл аппарата на данном токе – 30%.

Методика концерна TELWIN. К настоящему времени ее используют большинство китайских производителей (тех, которые вообще проводят такие испытания своих машин). Сам итальянский концерн при замерах ПВ своих аппаратов по собственной методике после показателя скромно указывает «TELWIN». Абсолютное большинство китайских производителей этого не делает.

Наконец, существует российская, она же советская, методика. По своей сути она ближе к методике TELWIN: суммируются все промежутки за контрольный период, когда аппарат работал. Но отрезок берется не 10, а 5 минут. И – самое главное – аппарат сначала вводится в режим срабатывания защиты от перегрева, после чего начинаются измерения.

В итоге один и тот же аппарат по всем 3 методикам выдает совершенно различный процент! Естественно, самые скромные «циферки» получаются по европейской методике, а самые впечатляющие – до 2 раз и более – по методике Telwin.

Исполнение: класс защиты IP

Класс защиты IP указывает на исполнение электротехнических приборов в отношении твердых объектов (первая цифра) и жидкостей (вторая цифра).

Определить степень защиты аппарата можно визуально. Если у аппарата с IP21 все вентиляционные щели полностью открыты, то у IP22 они уже прикрыты сверху выступающими козырьками. А у аппарата с IP23 эти козырьки почти полностью закрывают щели.

Степень защиты IP24 и выше технически затруднена и не имеет смысла.

Исполнение: класс изоляции (по нагревостойкости)

Многие материалы при нагреве выше определенной температуры утрачивают свои рабочие свойства. Для стандартизации материалов по данному признаку введена классификация изоляции по нагревостойкости. Почти все сварочные инверторы на транзисторах IGBT имеют класс изоляции H, что соответствует предельной температуре нагрева 180С. Предыдущая «ступенька» — класс F – означает предел нагрева 155С. Выше класса F – только класс С, указывающий на возможную температуру нагрева свыше 180С.

Температура эксплуатации

Как и внутренний нагрев, внешний нагрев и особенно охлаждение накладывают на эксплуатацию определенные ограничения. Большинство инверторных сварочных аппаратов пригодны для работы в диапазоне от 0С до +40С. Если аппарат пригоден для эксплуатации на морозе, обязательно указывается его предельное значение: минус 20С или минус 40С.

Преобразователь постоянного напряжения для солнечных панелей

Использование альтернативных источников энергии становится все более популярным. Ведь благодаря появлению современного оборудования, способного солнечный свет преобразовывать в электричество, появилась возможность сократить затраты на коммунальные платежи. Но все же не этот параметр является самым главным. Достоинства таких устройств, как солнечные батареи, заключаются в их абсолютной экологической безопасности.

Однако для эффективной работы этого оборудования необходимо наличие в его комплектации различных элементов, причем, одним из основных ее узлов является преобразователь напряжения. Он позволяет получать переменный ток напряжением 220В, который необходим для работы различной бытовой техники. Поэтому выбирать устройство нужно с учетом специфики применения.

Что представляет собой устройство

Принцип работы системы, основу которой составляют солнечные батареи, заключается в выработке постоянного тока напряжение от 12 до 48В, который используется для зарядки аккумуляторов. Но поскольку бытовая техника нуждается в переменном токе, то она подключается к источнику питания через инвертор-преобразователь напряжения.

Основной задачей такого прибора является преобразование постоянного тока, производимого солнечными батареями в переменный. В дальнейшем такая энергия может использоваться различными устройствами. Мощность инвертора-преобразователя напряжения может быть от 100 до 8000 Вт. Это позволяет выбирать прибор, параметры которого соответствуют общей нагрузке в сети электропитания конкретного объекта.

Конструкция и принцип действия

Основным элементом для некоторых модификаций прибора является блок бесперебойного питания. Работа его заключается в поддержании в сети нужного напряжения за счет аккумулятора. При отключении электричества ББП работает от батареи, причем, вырабатываемое ей электричество поступает в инвертор и с него на электроприбор.

Кроме этого в комплектацию преобразователя напряжения входит зарядное устройство, от которого происходит подзарядка аккумуляторов. И еще одним элементом преобразователя напряжения-частоты является микроконтроллер. Он контролирует параметры напряжения и в зависимости от этого дает команду на отключение или подключение батареи.

Виды инверторов

Классификация оборудования зависит от напряжения на выходе. Исходя из этого параметра различают два основных типа преобразователей напряжения-частоты:

В комплексе с солнечными батареями чаще всего используются инверторы второго вида. Они отличаются высоким качеством работы и считаются оптимальным вариантом для объектов, где установлена чувствительная техника. На выходе синусоидального преобразователя напряжения параметры похожи на те, которые выдает основная электрическая сеть.

Читайте также:  Измерительный трансформатор напряжения: принцип работы устройства, основные разновидности

Что касается меандровых моделей, то у них на выходе напряжение имеет форму прямоугольных импульсов. Поэтому такие устройства рекомендованы для использования в комплексе с световым оборудованием.

Но все же специалисты считают, что лучшим инвертором для применения с солнечной электросетью является многофункциональный. Это оборудование хотя и стоит дорого, но удачно сочетает в себе преимущества повышающих преобразователей напряжения различных типов.

Технические характеристики инверторов

Выбирая оборудование обычно обращают внимание на его основные параметры.

Для преобразователей напряжения 12-220 такими являются:

  • Выдаваемая мощность;
  • Синусоида на выходе;
  • Напряжение и частота;
  • Функции защиты;
  • Дополнительные возможности.

Рассмотрим каждую характеристику более детально. Начнем с выдаваемой мощности, так как этот параметр один из наиболее важных. От него зависит сколько и каких устройств можно будет подключить к инвертору-преобразователю напряжения. Определяется этот параметр в киловаттах. Но нужно учитывать, что в паспорте прибора указываются два значения – номинальная и пиковая мощности. Причем последнее значение в 1,5, а то и 2 раза больше первого.

На выходе повышающий преобразователь напряжения способен генерировать ток с чистой либо модифицированной синусоидой. Для потребителя этот момент не менее важен. чем мощность. Ведь при использовании оборудования с модифицированной синусоидой подключенные к нему газовые котлы могут не зажигаться, а циркуляционные насосы гудеть. Поэтому подключать к таким инверторам дорогостоящую технику не рекомендуется.

Выходные параметры, такие как напряжение и частота зависят от модели преобразователя. У однофазных инверторов они будут составлять 220В и 50 Гц, тогда как трехфазные модели имеют более широкий диапазон в 315, 400 и 690В.

Выходное напряжение устройства зависит от величины этого параметра на входе. Выпускают модели преобразователей напряжения-частоты на:

Любое устройство, чья работа связана с электричеством, должно иметь систему защиты от перегрузки или КЗ. Если речь идет об аккумуляторной батарее, то к перечисленным выше добавляются и некоторые другие. Это может быть защита от перезаряда батареи или неправильной полярности подключения, а также перегрева и перенапряжения. Некоторые модели повышающих преобразователей напряжения обладают функцией автоматического перезапуска.

Желание производителя упростить для пользователя управление прибора привело к оснащению их дополнительными элементами, такими как встроенный LCD-дисплей, розетки на корпусе, зарядное устройство.

Критерии правильного выбора

Обычно приобретая инвертор напряжения в первую очередь обращают внимание на его технические характеристики и функциональность.

Самыми важными параметрами являются:

  1. Номинальная мощность – должна соответствовать суммарному значению подключаемых нагрузок;
  2. Пиковая – способность выдавать максимальные кратковременные нагрузки;
  3. Форма сигнала на выходе – лучший вариант с максимально приближенной к синусоиде;
  4. Сила тока зарядного устройства – от нее зависит как быстро будет заряжаться аккумулятор;
  5. Спящий режим – пониженное потребление энергии при минимальных нагрузках.

Обзор популярных моделей

Среди представленных на рынке инверторы не все модели могут использоваться в комплексе с солнечными батареями. Поэтому мы рассмотрим только те приборы, которые рекомендованы для применения в системах с альтернативными источниками тепла.

Смотрим видео о продукции компании МикроАРТ:

Одним из них является продукция отечественного производителя компании МикроАРТ. Это профессиональный многофункциональный инвертор, выпускаемый под маркой МАП. В модельный ряд этой компании входят несколько модификаций на 12, 24 и 48В с мощностью от 1,3 до 18 кВт.

К достоинствам этого преобразователя напряжения 12-220 относятся:

  • Возможность использования при отсутствии или частых перебоях в энергоснабжении;
  • Применение в комплексе с генераторами для снижения шумового воздействия.

Но чаще всего такие приборы устанавливают в системах с возобновляемыми источниками энергии. Они отличаются высокой надежностью и могут быть установлены без привлечения специалистов.

На холостом ходу такие приборы потребляют минимальное количество энергии благодаря оснащению трансформатором в виде тора. На выходе они имеют чистый синус и могут работать в трехфазных системах.

Среди продукции зарубежных компании стоит отметить изделие компании Refusol. Эти инверторы германского производства относятся к однофазным стриговым. Они имеют высокий КПД, достигающий у некоторых моделей 98%, помещены во влагозащищенный корпус. Небольшие габариты преобразователей постоянного напряжения NV-M 300Вт/12В-220В значительно упрощают процесс транспортировки. На выходе прибор выдает модифицированную синусоиду, имеет защиту от КЗ, перегрузок, неправильной полярности. Такой преобразователь напряжения можно купить для системы солнечных батарей.

Еще одним довольно популярным производителем инверторов является фирма Solax. Ее продукция собирается на основе комплектующих от мировых лидеров в сфере производства инверторов. Выпускаемые компанией приборы имеют расширенные настройки, что позволяет максимально эффективно использовать полученную альтернативную энергию.

Установка такого преобразователя постоянного напряжения в системе позволил сделать дом полностью независимым от основной электросети. Инвертор Solax отличается простой конструкцией. Его монтаж можно выполнить самостоятельно.

Только получив максимум информации об устройстве, принципе действия и функциональности устройства можно сделать правильный выбор. Надеемся, что, прочитав эту статью вы сможете определиться не только с типом и параметрами преобразователя напряжения 12-220, но и купить оптимальную по цене и качеству модель.

Инвертор для сварки

Для работы с металлом в домашних условиях и на даче используют сварочные инверторы. Они позволяют надежно соединять стальные детали. Применение сварочного инвертора для дома не требует специальных навыков. О том, как выбрать сварочный инвертор, пойдет дальше речь.

На какие параметры сварочных инверторов обращать внимание

Чтобы выбрать сварочный инвертор для дома, следует изучить характеристики предлагаемых устройств. Основными среди них являются следующие.

  1. Сварочный ток или мощность сварочного инвертора. Его значение, измеряемое в Амперах (А), определяет способность аппарата работать при больших нагрузках без срабатывания защиты от перегрева. Рекомендуется для надежности выбирать аппарат инвертор с запасом по току – не менее 20%. Это важно для работы на сетях с пониженным напряжением.
  2. Продолжительность нагрузки: указывает на возможности аппарата работать в повторном режиме.
  3. Диапазон напряжения электросети: для работы на даче, где возможны значительные отклонения напряжения от номинального, выбираем прибор, который может работать как с пониженным, так и во время скачков напряжения.
  4. Наличие дополнительных функций, таких как: стабилизация дуги (ARC FORCE), горячий старт (HOT START) – делает зажигание дуги более легким за счет кратковременного увеличения тока, антиприлипание (ANTI STICK) – автоматически снижает ток при залипании электрода.

Принцип действия инвертора основан на многократном преобразовании электрического тока. В то время, когда производится сварка, происходят следующие процессы:

  • выпрямление и сглаживание переменного тока с помощью диодного моста (фильтра);
  • преобразование постоянного тока в высокочастотный (400 Гц) переменный ток;
  • увеличение тока до максимальных рабочих значений одновременно со снижением напряжения;
  • выпрямление тока.

Ниже приведена электрическая схема устройства.

Указанные преобразования производятся с помощью сетевого фильтра, частотных преобразователей и мощных диодных мостов (выпрямителей). В результате даже простой сварочный инвертор способен плавить сталь и другие металлы. Благодаря применяемым технологиям универсальный сварочный инвертор имеет небольшие размеры и вес, что позволяет выполнять сварочные работы в труднодоступных местах, облегчает транспортировку устройства.

Классификация аппаратов инверторного типа

Разделение по мощности

Выбор сварочного инвертора в зависимости от диапазона рабочего тока сводится к трем видам устройств:

  1. малой мощности (диапазон токов – 140-160 А): дешевый сварочный инвертор, вполне пригодный для непродолжительных и несложных домашних работ;
  2. средней мощности (максимальные токи – до 200 А): подключение сварочного инвертора такого типа возможно в гараже, на даче, в загородном доме;
  3. высокой мощности (токи до 250 А) – хороший сварочный аппарат профессионального уровня, малоприменимый в быту.

Маломощные можно применять для сваривания тонких металлических листов и деталей из стали. Это недорогой, но и ненадежный инвертор. Устройства со средней мощностью являются наиболее востребованными, это лучшее сочетание цены и функциональных возможностей. Высокомощные необходимы для работы с толстостенными металлическими деталями.

Классификация по типу сварки

Режимы, в которых способны работать инверторные аппараты различных типов:

  1. ММА – устройства для ручной дуговой сварки с помощью электродов;
  2. MIG/MAG – сварочный инвертор полуавтомат;
  3. TIG – используются для соединения металлов с применением аргона;
  4. CUT – для резания с помощью плазмы.

В бытовых условиях чаще используют приборы типа ММА (такие, как на фото). Для соединения или разрезания металлов требуются электроды. Работать можно только в специальной маске с защитным стеклом, предохраняющим глаза от ярких вспышек света.

Полуавтоматы применяют на производстве, для бытовой деятельности такие непригодны. Их размеры и масса большие, чем у приборов ММА. Во время сваривания шов формируется специальной проволокой, которую подают в плазменную дугу.

Для работы аргонно-дугового устройства необходимы электроды из вольфрама. Они контактируют с инертным газом. TIG в бытовых условиях не используют.

Плазменные резаки являются универсальными аппаратами, но их отличает высокая стоимость.

Подробнее о технических параметрах

Перед тем как выбрать сварочный инвертор, следует определить параметры сети питания.

  1. Если напряжение не стабильно, рекомендуется приобретать аппараты, работающие от сети 170-250 В.
  2. Продолжительность включения: определяет максимально возможное время беспрерывной работы. К примеру, если в паспорте указано 60%, то после работы в течение 10 мин. Инвертор должен «отдыхать» 4 мин. В противном случае произойдет автоматическое защитное отключение.
  3. Диаметр используемого электрода: для бытовых работ обычно достаточно 3 мм, но лучший прибор будет работать с 4 и 5-ти мм электродами.

Обзор производителей инверторов

Рейтинг сварочных инверторов для дома возглавляют устройства следующих производителей.

FUBAG – немецкая фирма, выпускающая приборы различного типа и мощности. Следует отметить модель FUBAG IN 163: это лучшие сварочные инверторы, так как они не боятся скачков напряжения, позволяют получить шов правильной формы без разбрызгивания металла. Имеют активную защиту от перегрева (с помощью вентиляции).

Telwin – инверторы итальянского производства, отличающиеся малым весом и небольшими размерами. Модель TELWIN FORCE 165 проста в эксплуатации, надежна и оснащена необходимым набором функций. Не боится скачков напряжения благодаря запасу мощности 15%. Может быть использована с электродами различного типа.

ProfHelper – фирма наладила выпуск популярной модели Prestige 181S, с которой можно работать на высоте и в труднодоступных местах, благодаря ее легкости и компактности. Оснащена всеми функциями, необходимыми для сваривания металла (антизалипание, горячий старт, форсаж дуги).

Среди отечественных устройств следует выделить Интерскол ИСА-160/7,1: это лучший выбор для работы с подключением к сети с нестабильным напряжением. Благодаря системе вентиляции, модель можно применять в условиях высоких температур (до 25°С).

Хорошо зарекомендовали себя инверторы моделей Ресанта САИ-220, Сварог EASY ARC 160 (Z213), Зубр ЗАС-190 и Кратон Smart WI-160.

Видео о том как выбрать сварочный инвертор

Добавить комментарий