Как работает транзистор: устройство, классификация и работа простым языком

Что такое транзистор и как он работает?

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторы Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

VT величина термодинамического напряжения, Nn и Np концентрация соответственно электронов и дырок, а ni обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.

Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: Iк = ß*IБ, где ß коэффициент усиления по току, IБ ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).

Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению ( Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.

Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Транзисторы: принцип работы,​ схема подключения, отличие биполярного от полевого

В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».

Что такое транзистор

Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Принцип работы полевого транзистора для чайников

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Устройство и принцип работы транзистора

Практическую значимость биполярного транзистора для современной электроники и электротехники невозможно переоценить. Биполярные транзисторы применяются сегодня повсюду: для генерации и усиления сигналов, в электрических преобразователях, в приемниках и передатчиках, да и много где еще, перечислять можно очень долго.

Поэтому в рамках данной статьи мы не будем касаться всевозможных сфер применения биполярных транзисторов, а только рассмотрим устройство и общий принцип действия этого замечательного полупроводникового прибора, который начиная с 1950-х годов перевернул всю электронную промышленность, а с 70-х годов сильно способствовал ускорению технического прогресса.

Биполярный транзистор — трехэлектродный полупроводниковый прибор, включающий себя в качестве основы три слоя чередующихся по типу проводимости. Таким образом, транзисторы бывают NPN и PNP-типа. Полупроводниковые материалы, из которых делают транзисторы, это в основном: кремний, германий, арсенид галлия и другие.

Кремний, германий и другие вещества изначально являются диэлектриками, но если в них добавить примеси, то они станут полупроводниками. Добавки в кремний типа фосфора (донор электронов) сделают кремний полупроводником N-типа, а если в кремний добавить бор (акцептор электронов), то кремний станет полупроводником P-типа.

В результате полупроводники N-типа обладают электронной проводимостью, а полупроводники P-типа — дырочной проводимостью. Как вы поняли, проводимость определяется по виду рабочих носителей заряда.

Так вот, трехслойный пирог из полупроводников P-типа и N-типа — это по сути и есть биполярный транзистор. К каждому слою припаяны выводы, которые называются: эмиттер, коллектор и база.

База — это управляющий проводимостью электрод. Эмиттер — это источник носителей тока в цепи. Коллектор — это то место, в направлении которого устремляются носители тока под действием приложенной к устройству ЭДС.

Условные обозначения биполярных транзисторов типов NPN и PNP на схемах различны. Данные обозначения как раз и отражают устройство и принцип действия транзистора в электрической цепи. Стрелка всегда изображается между эмиттером и базой. Направление стрелки — это направление управляющего тока, который подается в цепь база-эмиттер.

Так, у NPN-транзистора стрелка направлена от базы в сторону эмиттера, это значит что в активном режиме именно электроны из эмиттера устремятся к коллектору, при этом управляющий ток должен быть направлен от базы — к эмиттеру.

У PNP-трназистора наоборот: стрелка направлена от эмиттера в сторону базы, это значит что в активном режиме дырки из эмиттера устремляются к коллектору, при этом управляющий ток должен быть направлен от эмиттера — к базе.

Давайте разберемся, почему так происходит. При подаче постоянного положительного напряжения на базу NPN-транзистора (в районе 0,7 вольт) относительно его эмиттера, p-n-переход база-эмиттер данного NPN-транзистора (см. рисунок) смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь электроны могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.

При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. NPN-транзистор перейдет в открытое состояние.

Соотношение между током коллектора и управляющим током (базы) называется коэффициентом усиления транзистора по току. Данный параметр приводится в документации на транзистор, и может лежать в диапазоне от единиц до нескольких сотен.

При подаче постоянного отрицательного напряжения на базу PNP-транзистора (в районе -0,7 вольт) относительно его эмиттера, n-p-переход база-эмиттер данного PNP-транзистора смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь дырки могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.

Обратите внимание на полярность питания коллекторной цепи. При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. PNP-транзистор перейдет в открытое состояние.

Биполярные транзисторы обычно используются в различных устройствах в усилительном, барьерном или в ключевом режиме.

В усилительном режиме ток базы никогда не опускается ниже тока удержания, при котором транзистор все время пребывает в открытом проводящем состоянии. В данном режиме колебания малого тока базы инициируют соответствующие колебания значительно большего тока коллектора.

В ключевом режиме транзистор переходит из закрытого состояния в открытое, выполняя роль быстродействующего электронного коммутатора. В барьерном режиме — путем варьирования тока базы управляют током нагрузки, включенной в цепь коллектора.

Принцип работы, разновидности и устройство транзистора

Любое электронное устройство состоит из радиоэлементов. Они могут быть пассивными, не требующими источника питания, и активными, работа которых возможна только при подаче напряжения. Активными элементами называют полупроводники. Одним из важнейших полупроводниковых приборов является транзистор. Этот радиоэлемент пришёл на смену ламповым приборам и полностью изменил схемотехнику устройств. Вся микроэлектроника и работа любой микросхемы базируется именно на нём.

Общие сведения

Название «транзистор» произошло от слияния двух английских слов: transfer — переносимый, и resistor — сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением — полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Параллельно с усовершенствованиями биполярного транзистора в 60-х годах начались разработки прибора на основе соединения металла с полупроводником. Такой радиоэлемент получил название МОП (металл-оксид-полупроводник) транзистор, сегодня более известный под обозначением «мосфет».

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, — потенциалом на затворе, а для биполярных транзисторов — потенциалом на базе или током базы.

Электронно-дырочный переход

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером. Биполярный прибор бывает двух типов:

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы. Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Общее определение для радиоэлемента можно сформулировать следующим образом: транзистор — это полупроводниковый элемент, предназначенный для преобразования электрических величин. Основное его применение заключается в усилении сигнала или работе в ключевом режиме.

Биполярный прибор

Принцип работы транзистора для «чайника» проще описать по аналогии с водопроводом. Сам элемент можно представить в виде вентиля. Кран небольшим поворотом позволяет регулировать поток воды (силу тока). Если немного повернуть рукоятку, вода потечёт по трубе (проводнику), если приоткрыть кран ещё сильнее, поток воды также увеличится. Таким образом, выход потока воды пропорционален её входу, умноженному на определённую величину. Этой величиной называется коэффициент усиления.

Биполярный транзистор имеет три вывода: эмиттер, база, коллектор. Эмиттер и коллектор имеют одинаковый тип проводимости, который отличный от базы. Дырочного типа транзисторы состоят из двух областей p -типа проводимости, и одной n -типа. Электронного типа наоборот. Каждая область имеет свой вывод.

При подаче на эмиттер сигнала нужной проводимости ток в области базы увеличивается. Основные носители заряда перемещаются в зону базы, что приводит к возрастанию тока и в обратной области подключения. Возникает объёмный заряд. Электрическое поле начинает втягивать в зону обратного подключения носители другого знака. В базе происходит частичная рекомбинация (уничтожение) зарядов противоположного знака, благодаря чему и возникает ток базы.

Эмиттером называют область прибора, служащую для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика, функция которой описывает зависимость между током и напряжением.

На схеме устройство подписывается латинскими буквами VT или Q. Выглядит как круг со стрелкой внутри, где стрелка указывает направление протекания тока. Для PNP (прямая проводимость) — стрелка внутрь, а NPN (обратная проводимость) — стрелка наружу. Для того чтобы сделать транзистор, используется германий или кремний. Отличаются эти материалы рабочей областью напряжения базового перехода. Для германиевых он лежит в диапазоне 0,1−0,4 В, а для кремниевых от 0,4 до 1,2 В. Обычно используется кремний.

Полевой транзистор

Отличие полевого транзистора от биполярного в том, что в нём за прохождение тока отвечает величина напряжения, приложенная к управляемому контакту.

Основное назначение мосфетов связывают с их хорошей скоростью переключения при весьма небольшой мощности, приложенной к выводу управления. Полевой элемент имеет три вывода: затвор, сток, исток. При работе мосфета с управляющим n-p переходом потенциал на затворе либо равен нулю (прибор открыт), или имеет определённое значение, превышающее ноль (прибор закрыт). Когда обратное напряжения достигает определённого уровня, то открывается запирающий слой, и устройство переходит в режим отсечки.

В мосфете с p-n переходом управляющим электродом (затвором) служит слой полупроводника, имеющий проводимость р-типа, а противоположной проводимости — канал n-типа.

Изображение его на схеме сходно биполярному устройству, только все линии выполняются прямыми, а стрелка внутри подчёркивает разновидность прибора. В основе принципа действия МОП приборов лежит эффект изменения проводимости полупроводника на границе области с диэлектриком при воздействии электрического поля. Полевые устройства в зависимости от управляемого p-n перехода могут быть:

  1. Со встроенным каналом. Работают в двух режимах: обеднения и обогащения. В первом режиме величина потенциала на затворе превышает значение на истоке, что приводит к снижению значения тока на нём. Если приложенный потенциал больше напряжения отсечки, то ток между выводами стока и истока отсутствует. При обогащении, наоборот, чем больше величина потенциала между выводами затвор-исток, тем больше ток стока.
  2. С индуцированным (наведённым) каналом. Для p-канального устройства при отсутствии потенциала на выводе затвор-исток ток стока близок к нулю. Такой тип работает только в режиме обогащения. При этом напряжение на выводах исток-затвор должно быть больше нуля. Когда это напряжение превысит значение порогового, то между стоком и истоком возникнет проводимость p-типа. Связано это с тем, что количество дырок под затвором увеличится. Это явление называется инверсией.

Каждый вид может иметь проводимость как p-типа, так и n-типа. В общем понимании принцип работы не зависит от проводимости, меняется только полярность источника напряжения.

Принцип действия для чайников

Транзистор — это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор — это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора — это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

Транзисторы. Классификация и принцип работы (и шпаргалка).

Транзисторы подразделяют на две большие подгруппы – биполярные и полевые. Они обычно используются для усиления, генерации и преобразования электрических сигналов. В 1956 г. за изобретение биполярного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ.

Биполярный транзистор — это полупроводниковый прибор с двумя p-n -переходами, имеющий три вывода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и элект­ронов), а управление протекающим через него током осу­ществляется с помощью управляющего тока.

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р-n-р или n-р-n) и соответственно два p-n -перехода. Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу.

Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод на­зывают эмиттером, а другой крайний слой и соответству­ющий вывод — коллектором.

Дадим схематическое, упрощенное изображение струк­туры транзистора типа n-р-n (рис. 1, а) и два допусти­мых варианта условного графического обозначения (рис. 1, б). Транзистор типа р-n-р устроен аналогично. При этом “стрелочка” эмиттера будет напрвлена в противоположном направлении – в сторону базы. Стрелки эмиттеров показывают направление токов через транзистор.

Рис. 1. Cхематическое изображение струк­туры транзистора

Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители элект­ричества двух знаков — электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна.

Транзисторы типа n-р-n более распространены в сравнении с транзисторами типа р-n-р, так как обычно имеют луч­шие параметры. Это объясняется следующим образом: ос­новную роль в электрических процессах в транзисторах типа n-р-n играют электроны, а в транзисторах р-n-р — дыр­ки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.

Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора.

Количественное своеобразие структуры транзистора. Для определенности обратимся к транзистору типа n-р-n. В основе работы биполярного транзистора лежат не какие-либо новые физические процессы, еще не рассмотренные при изучении полупроводникового диода: своеобразие транзистора определяется особенностями его конструкции.

Основными элементами транзистора являются два соединенных pn -перехода. Это позволяет дать формальное представление структуры транзистора, представленное на рис. 2, а.

Для понимания принципа работы транзистора исключительно важно учитывать, что pn -переходы транзисто­ра сильно взаимодействуют. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот. Имен­но это взаимодействие радикально отличает транзистор от схемы с двумя диодами (рис. 2, б).

Рис.2. Структура транзистора.

В схеме с диодами ток каждого диода зависит только от напряжения на нем самом и никак не зависит от тока другого диода.

Указанное взаимодействие имеет исключительно простую главную причину, а именно: очень малое расстояние между переходами транзистора. Это расстояние называют толщиной базы. Именно эта количественная особенность структуры создает ка­чественное своеобразие транзистора.

Вообще полезно отметить, что в электронике достаточно часто реализуется следующий способ получения устрой­ства, обладающего новым качеством: особым образом со­единяют два одинаковых, уже хорошо изученных элемента.

Основные физические процессы. Концентрация атомов примеси (и свободных электронов) в эмиттере сравнительно велика, поэтому этот слой низкоомный. Концен­трация атомов примеси (и дырок) в базе сравнительно низка, поэтому этот слой высокоомный. Концентрация атомов примеси (и свободных электронов) в коллекторе может быть как больше концентрации атомов примеси в базе, так и меньше ее. С помощью источников напряжения сместим эмиттерный переход в прямом, а коллекторный — в обратном направлении (рис. 3). Тогда через эмиттерный переход потечет ток Iэ, который будет обеспечиваться главным образом инжекцией электронов из эмиттера в базу. Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей.

Рис.3. Физические процессы в транзисторе.

Из-за малой толщины базы почти все электроны, пройдя базу, через так называемое время пролета достигают коллектора. Только малая доля электронов рекомбинирует в базе с дырками. Убыль этих дырок компенсируется протеканием тока базы iэ. Из изложенного следует, что iб « iэ.

Обратное смещение коллекторного перехода способ­ствует тому, что электроны, подошедшие к нему, захваты­ваются электрическим полем перехода и переносятся в коллектор. В то же время это поле препятствует переходу электронов из коллектора в базу. Ток коллектора iK лишь незначительно меньше тока эмиттера, т. е. iK= iЭ.

где аст так называемый статический коэффициент передачи эмиттерного тока (термин статический подчеркивает тот факт, что этот коэффициент связывает по­стоянные токи); Iко — так называемый обратный ток коллектора. Природа обратного тока коллектора такая же, как и у обратного тока диода (т. е. тока диода, включенного в об­ратном направлении). Ток Iко протекает и тогда, когда ток эмиттера равен нулю.

Работа транзистора. Поскольку биполярные транзисторы состоят из двух p-n -переходов, то проверку целостности транзистора можно осуществить, контролируя сопротивление этих переходов при прямом и обрат­ном подключении напряжения к ним. Транзистор n-р-n проверяется по сопротивлениям переходов.

Для нормальной работы n-р-n -транзистора требуется положительное напряжение на коллектор. Базовый переход открывается положительным напряжением. Базовый ток вызывает появление коллекторного тока (рис. 4, а). При отрицательном напряжении в базе транзистор закрывается. Если плавно менять напряжение Uб, то ток Iб меняется, как показано на рис. 4, б. Если дискретно задавать значения Iб1, Iб2 и т.д. и плавно менять напряжение UK, то получим семейство коллекторных (выходных) характеристик (рис. 4, в).

Для нормаль­ной работы р-n-p -транзистора требуется отрицательное напряжение на коллекторе. Открывается базовый переход отрицательным напряжением (рис. 4, г). При положительном напряжении в базе транзистор закрывается. Если плавно менять напряжение Uб, то ток Iб меняется, как показано на рис. 4, д. Если дискретно задавать значении Iб1, Iб2 и т. д. и плавно менять напряжение UK, то получим семейство кол­лекторных (выходных) характеристик (рис. 4, е).

Рис. 4. Входные и выходные характеристики транзисторов.

В усилительных схемах транзисторы могут применяться в двух режимах: в схеме с обшей базой (рис. 5, а) и в схеме с обшим эмиттером (рис. 5, б). Во входной цепи, кроме источника постоянного напря­жения, необходимого для обеспечения активного режима работы, также используют источник входного переменно­го напряжения. Изобразим две характерные схемы вклю­чения транзистора.

Рис. 5. Схемы включения транзистора.

  • Схемас общей базой (ОБ)(рис. 5.а). Если сопротивле­ние нагрузки достаточно велико, то амплитуда перемен­ной составляющей напряжения иыхзначительно больше амплитуды напряжения ивх. Учитывая, что iвых=iвх, можно утверждать, что схема не обеспечивает усиления тока, но усиливает напряжение. Входной ток такой схемы доста­точно большой, а соответствующее входное сопротивле­ние малое.
  • Схема с общим эмиттером (ОЭ)(рис. 5.б). Так как iвых » iвх, а при достаточно большом сопротивлении Rн, амплитуда переменной составляющей напряжения ивыхзна­чительно больше амплитуды напряжения ивх, следователь­но, схема обеспечивает усиление и тока, и напряжения.Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой.
  • Схема с общим коллектором(ОК)эквивалентна схеме с обшим эмиттером и по-этому не нашла широкого применения (за исключением эмиттерных повторителей). Само напряжение ибэ и особенно переменная состав­ляющая этого напряжения достаточно малы, поэтому амплитуда переменной составляющей напряжения ивхпримерно равна амплитуде переменной составляющей на­пряжения ивых. В соответствии с этим усилительные кас­кады, в которых транзисторы включены по схеме с общим коллектором, называют эмиттерными повторителями. Учитывая также, что iвx « iвых, отмечают, что схема уси­ливает ток, но не усиливает напряжение.

На практике, для построения большинства устройств, наиболее часто используется схема с общим эмиттером.

Полевым или униполярным транзистором называется транзистор, в котором управление происходит под действием электрического поля перпендикулярного току. На схемах их обозначают, как показано на рисунке ниже:

,

где: З- затвор, И- исток, С- сток.

Проводящий слой, по которому протекает ток, называется каналом. Различают р- и n-канальные транзисторы. Каналы могут быть приповерхностными и объемными, горизонтальными и вертикальными. Пример полевого транзистора с n – p переходом и n- каналом приведен на рис. 6.

Рис. 6. Полевой транзистор: а -конструкция транзистора; б- структура кристалла.

В свою очередь приповерхностные каналы делятся на обогащенные или обедненные но­сителями, либо инверсионные слои. Их формирует внешнее электрическое поле. Обед­ненные каналы представляют собой участки однородного полупроводника, отделенные от поверхности обедненным слоем.

На рис. 7 приведены схемы каналов в полевых транзисторах. Транзисторы с при­поверхностным каналом имеют структуру металл диэлектрик полупроводник (МДП). Такие транзисторы принято называть МДП-транзисторами. Если диэлектриком является диоксид кремния SiO2, то используется название МОП-транзисторы. Транзисторы с объ­емным каналом получили название полевых транзисторов.

Рис. 7. Каналы в униполярных транзисторах: а- приповерхностный n- канал; б- объемный p- канал,

1 — обедненный слой.

Таким образом, работа полевого транзистора представляется следующим образом: сила проходящего через него тока регулируется внешним электрическим полем, т.е напряжением. Это принципиальное различие между ним и биполярным транзистором, где сила основного тока регулируется управляющим током (рис.8).

Рис. 9. Принцип действия полевого и биполярного транзисторов.

Поэтому ВАХ полевого транзистора обратно эквивалентна ВАХ биполярного. Более наглядно это показано на рисунке 9. При увеличении значения Uзи происходит постепенное закрытие проводящего канала.

Рис. 9. Сравнительная выходная ВАХ полевого (а) и биполярного (б) транзисторов.

Краткое описание транзисторов, диаграммы, схемы включения и h-параметры можно скачать здесь Транзисторы Биполярные и Полевые (шпаргалка и h-параметры).doc (431 kB)

Читайте также:  Как проверить реле на работоспособность: прозвонка выводов мультиметром
Добавить комментарий