Надежная схема регулятора оборотов коллекторного двигателя без потерь мощности с обратной связью по Тахо

Регулятор оборотов с обратной связью для коллекторных двигателей переменного тока

Большинство мировых производителей профессиональных угловых шлифовальных машинок (болгарок) таких как Bosch, Metabo, Makita, DeWalt и других используют два типа регуляторов оборотов с обратной связью.

С помощью таходатчика

На конце якоря мотора установлен кольцевой магнит с прорезью или срезом, а на плате регулятора установлена ка­тушка индуктивности или датчик Холла. Такой регулятор обес­печивает максимально точную стабилизацию оборотов дви­гателя при изменении нагрузки.

На основе измерения падения напряжения на электро­двигателе

В этом случае измеряется падение напряжения на дви­гателе, и схема управления изменяет длительность открытия силового ключа. Такой регулятор, если он правильно наст­роен, обеспечивает также хорошую стабилизацию оборотов двигателя при изменении нагрузки.

Все промышленные регуляторы, собранные на микро­контроллерах, полностью залитые эпоксидной смолой и в ито­ге они не пригодны для ремонта, а цена за новый регулятор достаточно большая, и составляет примерно 20-30% от сто­имости самого электроинструмента.

В поиске специализированных микросхем для решения данной задачи мне приглянулись регуляторы Phase Control фирмы Atmel. Например, простой вариант регулятора на ми­кросхеме U2008B. Рассмотрим схему регулятора на ИМС U2008B приведенную на рис.1. В данном регуляторе можно использовать обратную связь по току или режим плавного пуска, однако в нём нет защиты от перегрузки. Если исполь­зовать плавный пуск тогда нужны только элементы С1, R4 и перемычку Х1 не ставим, а если нужна обратную связь — тог­да все наоборот.

Так как ИMC U2008B не может одновременно работать в режиме плавного пуска и обратной связи, она не подходит для нашей задачи. На рис.2 пока­зана схема регулятора на микросхеме U2010B, у которой есть обратная связь по току, защи­та от перегрузки и плавный старт одновре­менно. Светодиод D2 индицирует перегрузку электродвигателя. Переключатель SA1 «Mode» обеспечивает возможность выбора действий при перегрузке на двигателе в трех режимах: Положение А — индикация перегрузки и по­следующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.

Положение В — индикация перегрузки, по­следующий сброс на минимальные обороты, по­сле снятие нагрузки с инструмента, восста­навливаются установленные обороты, т.е. про­исходит авто старт.

Положение С — только индикация перегруз­ки, без остановки двигателя и защиты.

Подбором ёмкости конденсатора СЗ от 1 до 10 мкФ можно изменять длительность и плав­ность пуска двигателя.

Настройка регулятора.

В техническом описании к ИМС U2010B в схеме подключения обозначено только падение напряжение на R6 в 250 мВ и не указано, ка­ким именно должен быть этот резистор.

Рассчитать сопротивление R6 можно исходя из мощнос­ти двигателя по формуле:

где:
UR6 — напряжение на R6 (250 мВ),
Рдвиг — мощность двигателя,
UПИТ — напряжение питания сети.

Например, для двигателя мощностью 750 Вт рассчитыва­ем: R6= 0,25/(750/220) = 0,07 Ом.

Номиналы резисторов R6 и R11, в зависимости от мощ­ности электродвигателя, приведены в таблице.

R11 Мощность, ВтR6*, ОмНихром, D 1 ммНихром, D 0,8 ммR11*, кОм
2500,223019180-270
3000,182717180-220
5500,12516180
7000,082014160
8500,071711150
10000,0551510100-120
12000,04713990-110
15000,0412880-100
18000,0310770-100
20000,0288665-90
22000,0257565-90

Главное правильно подбирать резистор R6 под мощность двигателя. Выше представленная формула правильная, но на практике может потребоваться некоторая коррекция по по­ведению двигателя под нагрузкой. Если резистор великоват, то двигатель довольно резко стартует (т.е. происходит боль­шая компенсация нагрузки, чем надо), а потом отключается, а если резистор будет мал, то не будет обеспечиваться ком­пенсация нагрузки.

В Datasheet к ИМС U2010B ёмкость конденсатора С2 указана 0,01 мкФ, но она рассчитана на 60-герцовую сеть, и при использования ИМС в сети 50 Гц за период выдава­лось несколько импульсов управления. В итоге, обороты эле­ктродвигателя практически не регулировались и двигатель ра­ботал на полную мощность. Для сети с частотой 50 Гц нуж­но ёмкость конденсатора С2 увеличить до 0,015 мкФ.

Первый пуск

Переменный резистор Р1 (регулятор оборотов) нужно установить на минимальные обороты двигателя, по схеме движок потенциометра должен быть повернут в сторону ре­зистора R13. Затем подстроенный резистор R10 (компенса­ция нагрузки) установить в среднее положение, а на место R11 (перегрузка) временно подпаять постоянный резистор сопротивлением 62 кОм. Потом включить регулятор в сеть 220 В / 50 Гц и подстроенным резистором R8 выставить са­мые минимальные обороты двигателя.

Нужно сделать так, чтобы при включении двигатель на­чинал вращаться на минимальных оборотах. Если настроить устройство так, чтобы совсем не было напряжения на элек­тродвигателе, то тогда становится слишком нелинейная за­висимость управления резистором Р1 — при его повороте сначала двигатель не крутится, а потом резко стартует без плавного пуска.

Далее нужно подключить вольтметр с диапазоном изме­рения 300 В к выводам двигателя, включить двигатель и на средних оборотах, зажимая вал или привод двигателя через тряпку рукой, выставить такое положение резистора R10, что­бы обороты электродвигателя не менялись при изменении нагрузки на его валу. Одновременно с этим нужно смотреть на вольтметр, подключенный к двигателю. При увеличении нагрузки на валу электродвигателя регулятор прибавляет напряжение, и двигатель крутится с одинаковыми оборота­ми, независимо от нагрузки.

И вот в последнюю очередь настраивается резистор R11 (перегрузка). Постоянный резистор номиналом 62 кОм вы­паиваем и вместо него ставим подстроенный или перемен­ный резистор номиналом 220 кОм. На оборотах двигателя чуть больше минимальных, сильно зажимая вал или привод двигателя, стараемся почти заклинить вал двигателя, и по степенно изменяем величину резистора R11, пока не начнет срабатывать защита, и не станет светиться VD2. Затем из­мерьте сопротивление переменного резистора тестером и за­паяйте в устройство соответствующий резистор. В таблице указано приблизительные значения сопротивления R11,

Детали регулятора

Купить микросхемы U2008B, U2010B можно через сайт AliExpress (www.ru.aliexpress.com) в Китае с бесплатной до­ставкой на Украину, а далее посылка бесплатно отправляется через «Укрпочту» в любое почтовое отделение на тер­ритории Украины. Доставка на Украину производится на про­тяжении 25-40 дней. Например, цена 1 шт. микросхемы U2010B зависит от корпуса исполнения, примерно 0,9 USD в корпусе S016 и 1,2 USD в корпусе DIP16, а симистора ВТА24-800 — 0,4 USD.

Печатная плата устройства изготовлена из односторонне­го фольгированного стеклотекстолита толщиной 1 мм.

Симистор VS1 лучше использовать с изолированной пло­щадкой под радиатор серии ВТА, например BTA12-800, BTA16-800, BTA24-800, или применить другие. При мощнос­ти двигателя до 400 Вт, VS1 можно не устанавливать на ра­диатор. Все SMD детали типоразмера 1206, их можно запа­ять обычным паяльником с тонким жалом.

Подстроенные резисторы — типа СП3-19а или другой ма­логабаритный. Переменный резистор Р1 любой на 47-50 кОм, можно малогабаритные СП4-1, СП3-9. Резистор R1 мощностью не менее 2 Вт, например, типа MЛT-2 или др. Резистор R6 изготовлен из нихромовой проволоки диаметром 0,7 — 1 мм. Автор использовал нихромовый провод из старого блока сопротивлений для зажигания автомобилей ГАЗ с маркировкой 1402.3729. Все электролитические конденса­торы на напряжение не менее 50 В. Диод D1 — типа 1N4007 или КД208, также можно использовать диод в SMD исполне­нии. Светодиод D2 любой малогабаритний диаметром 3-5 мм красного света. Переключатель SA1 любой малогабаритный 3-х позиционный. Если нужен только один режим перегруз­ки, тогда вместо него можно установить перемычку.

Литература:

  1. Бирюков С. Автомат плавного пуска коллекторных эле­ктродвигателей. // Радио. — 1997. — №7. — С.40-42.

Печатная плата для схемы показанной на рисунке 2:

Автор: Валентин Шипляк, г. Ужгород

Мастеровым от мастерового.

На этих страницах вы узнаете о моих работах, изделиях и идеях. Я постараюсь дополнять свои видео текстом и изображениями, а так-же тем, что пропустил или вырезал из роликов. С уважением Шенрок Александр.

Ярлыки

Настройка регулятора оборотов коллекторного двигателя с поддержанием мощности.

двигатель дёргается под нагрузкой

109 комментариев:

Добрый день. Регулятор работает , но минимальные обороты 3000-4000 об. Как уменьшить минимальные обороты?

Попробуйте R12 покрутить.

Посмотрите пожалуйста напряжение на 13й ноге и как оно изменяется при регулировке оборотов.

Сергей, обратитесь с этой просьбой либо на форум, ссылку я давал на этой странице. Либо у тех кто занимается изготовлением плат на заказ. Есть в блоге такая страничка. А у меня нет возможности произвести замеры.

Всем привет!У меня проблема-двигатель плавно набирает обороты до максимальных, а я кручу верчу регулировочный резистор и толку 0.Помогите пожалуйста!

Дополнительный светодиод ставили?

Поставил дополнительный светодиод и подстроечный резистор на таходатчик и отрегулировал.Двигатель работает без рывков! А регулировочный резистор с подстроечным не работают!

попробуйте его убрать, что получится?

Доброго дня, собрал плата по своей разводке все работает за исключением того что двигатель не набирает полных оборотов, на резистор реагирует до половины и все, в чем может быть проблема?

Р12 подстроечное. Попробуйте его покрутить.

Добрый день!Собрал плату.Таходатчик не подкючаю двигатель работает на полных оборотах ни на какие регулировки не реагирует.Помогите.

А кто вам сказал что будет работать без таходатчика? Он вообще не должен вращаться. Или вы поставили дополнительный светодиод?

Здравствуйте, напишите пожалуйста как можно заказать плату, я из Ульяновска, почта майл gulnara-173region@mail.ru

светодиода не ставил никакого.как проверить исправность тахо?

у вас тахогенератор (2 провода) или датчик Холла (3 провода)?
Вам нужно саму схему проверить так как без тахо двигатель вообще не должен вращаться.

на любых оборотах двигатель работает рывками, в чем беда?

На этой странице в самом конце статьи. Почитайте.

Читайте также:  Ремонт зарядного устройства для автомобильного аккумулятора: возможные неисправности, методы их исправления

не могу никак разобраться. при включении в сеть мотор должен сделать рывок. его нет. молчит, не запусаеться. в цем может быть дело? питание на микросхему есть. пробовал менять микросхему и симистор – без изменений

Рывок должен быть при вращении регулятора.
Таходатчик подключили?

Подскажите пожалуйста, без доп.светодиода- рывки, со светодиодом при регулировке R1 выходит плавно на максимум, регулировки нет. Меняя R2 и R9 подбирается только в каком положении R1 запускается двигатель а регулировки все равно нет. Где искать?

Со светодиодом на максимум выходит если нет тахо. посмотрите может плохой контакт. Попробуйте без диода, а подбором R9.

Без тахо со светодиодом выходит (кстати не весь максимум двигателя), без светодиода ставлю R1 на max, R9 сделал переменным на 1 Мом, потихоньку уменьшаю, где-то при 250 кОм двигатель начинает подергиваться делаю чуть меньше сразу максимум оборотов-R1 не регулирует:либо нет, либо сразу вкл плавно на макс

Кстати со светодиодом при нагрузке двигателя поддержки оборотов нет, опускается до малых оборотов и их держит, остановить нельзя

Мне кажется у вас проблемы с таходатчиком. либо магнит откручен, или его вообще нет. Замерте какое напряжение выдаёт тахо на максимуме.

20 вольт переменки , двиг с рабочей стиралки, там бак полетел, а так работала норм вроде

увеличил R9 обороты вышли на полный максимум, на тахо больше 40 вольт

таходатчик вроде генератор переменки, на прозвон импульсов нет, постояное сопротивление только

Тогда даже не знаю что посоветовать.

Все равно спасибо, буду думать

Удачи. Результат напишите.

появилась мысль что виновата регулировочная цепь, полностью закоротил перемычкой R2 и появилась регулировка, но еще не совсем то, попробую уменьшить регулировочное R1

Подскажите и мне пожалуйста. По питанию после резистора на 270 Ом у меня 3 вольта, микросхема при подключении на выводы 8 и 9 15В(с ограничением тока в 100мА) гасит напряжение до 4 В. Три микрухи одинаково. Микры из Китая. В них проблема да?

Спросите на форуме.

Собрал немецкий вариант платы, собственно он по даташиту сделан. Скорость регулируется почти от нуля до максимума. Но регулировка происходит периодически с периодом 2..5 секунд. Т.е. разгоняется мотор до какой-то скорости, напряжение перестает подаваться. Замедлится, снова разгоняется. И так бесконечно. Если вал затормозить, то для разгона контроллер значительно увеличивает мощность, т.е. обратная связь по таходатчику работает. Спасибо!

Если хотите, могу помочь. Я справился со всем кроме авторегулировки мощности. PID регулирование не доделал. По поводу R3 – проверю.

Я в ардуино новичок. Если хорошо комментировано, то интересно глянуть. Вот кстати тема. Я там чайник.

Если в ардуино новичок – то будет трудно. Обратная связь самое простое – пид регулирование. Но там куча нюансов.
Я кстати так и не понял какую схему вы делаете. я отсюда начинал
http://www.cnc-club.ru/forum/viewtopic.php?f=41&t=5718&sid=b42590ac3a04ff5c33fc05b948e5741d

Я сначала хотел сделать на транзисторе, чтоб питать двигатель постоянкой. Плюсы такие: на постоянке движок мощнее, не нужна схема отслеживания нуля, как для симистора, и для регулировки используем уже имеющийся ШИМ, а не считаем время на каждом полупериоде. Но надёжность полевых транзисторов свела на нет мои старания. Двигатель меньшей мощности получилось “крутить”, а на движке от стирлки мосфеты вылетали. Тогда спаял симисторную схему, и отслеживание нуля и управление. ПИД регулирование пока не использовал. Пробовал свой алгоритм. От 1,5 тыс обмин держит вроде бы неплохо. Некуда поставить движок чтоб проверить. В качестве тахо ставил датчик Холла. Мне так проще

Спаял схему, двигатель крутит на максимум, без тахо также макс обороты, регулировкам не поддается, в место 24в на схеме всего 20в

Дополнительный светодиод впаивали?

Скачал с интернета схему, описание платы в нем же список деталей, печатную плату. Закупил все детали, отличие в деталях это вместо конденсатора 1мф на 600v я поставил – 1мф на 630v, и вместо диода FR301 поставил FR307. Все остальные детали согласно списка.
Печатную плату поправил под свои детали по размерам. Самостоятельно изготовил печатную плату, спаял все детали. Подключил двигатель SOLE Type 20584.333 от стиральной машины индезит wil85. Двигатель с таходатчиком. Таходатчик выдает переменное напряжение примерно 36 вольт. При включении двигатель плавно набирает максимальные обороты и устойчиво их держит, при регулировке R1 ни чего не происходит, также при регулировках R3 и R21, двигатель на максимальных оборотах. Выпаивал R2 ставил перемычку, также выпаивал R35, ставил тоже перемычку, результат тот же двигатель на максимальных оборотах. На схеме указаны в двух местах напряжения, там где 12 вольт у меня 12,5 вольт, там где 24 в у меня 20 вольт. на 9 и 8 ноге микросхемы 15,6 вольт. пытался с помощью сопротивлений уменьшить напряжение с таходатчика с 36 вольт до 6,5 вольт и подключал светодиод дополнительный между 12 ногой и 8 ногой микросхемы, при максимальных оборотах двигателя напряжение между 12 и 8 ногой микросхемы всего 1,4 вольт. Все эти действия не к чему не привели, двигатель попрежнему работает на максимальных оборотах.

Регулятор оборотов электродвигателя: назначение, принцип работы

В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.

Принцип работы

Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.

Среди используемых в промышленной и бытовой сфере следует выделить:

  • Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
  • Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
  • Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.

Рис. 1. Схема тиристорного регулятора

Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.

  • Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.

Регулировка оборотов на транзисторах

Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.

  • Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.

Пример частотного регулирования

  • Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.

Регулировка оборотов переключением пар полюсов

Как выбрать?

Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.

Читайте также:  Диммеры: принцип работы выключателей с регулятором яркости света, как подключить регулятор освещения

Помимо этого для регулятора оборотов необходимо выбрать:

  • Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
  • Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
  • Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
  • Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
  • Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:

Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:

Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.

Проверьте цветовую маркировку

Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

Описание регулятора оборотов электродвигателя без потери мощности

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

Как сделать регулятор оборотов коллекторного двигателя?

При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.

Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

  1. Коллекторные двигатели.
  2. Асинхронные двигатели.

В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».

Эту закономерность можно использовать для работы коллекторного двигателя.

Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.

Устройство

Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

  1. Ротор — это вращающаяся часть, статор — это внешний магнит.
  2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
  3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
  4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.

Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.

Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.

Если говорить об их классификации, то можно говорить о:

  1. Коллекторных двигателях постоянного тока.
  2. Коллекторных двигателях переменного тока.

В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

Разница состоит в том, как организованы эти подключения.

Тут принято различать:

  • Параллельное возбуждение.
  • Последовательное возбуждение.
  • Параллельно-последовательное возбуждение.

Регулировка

Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.
Читайте также:  Как правильно установить счётчик на воду: опломбирование, временные затраты и советы по покупке

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Критерии выбора и соимость

Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

  1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
  2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
  3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
  4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
  5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.

В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:

  1. Регулятор оборотов KA-18 ESC, предназначенный для моделей масштаба 1:10. Стоит 6890 рублей.
  2. Регулятор оборотов MEGA коллекторный (влагозащищенный). Стоит 3605 рублей.
  3. Регулятор оборотов для моделей LaTrax 1:18. Его цена 5690 рублей.

форум моделистов Судомоделизм

ShipModeling форум моделистов Верфь на столе

  • Темы без ответов
  • Активные темы
  • Поиск

схема для регулировки оборотов

схема для регулировки оборотов

#1 Сообщение —(CORSAR)— » Пн мар 02, 2009 17:21

Я делаю токарный станок,но у двигателя слишком большые обороты 6000 .Кто знает или есть схема для регулировки оборотов однофазонго роторного двигателя (240W)

Re: схема для регулировки оборотов

#2 Сообщение Алексей Доманов » Пн мар 02, 2009 17:38

—(CORSAR)— писал(а): Я делаю токарный станок,но у двигателя слишком большые обороты 6000 .Кто знает или есть схема для регулировки оборотов однофазонго роторного двигателя (240W)

#3 Сообщение klev » Пн мар 02, 2009 17:40

если хотите творчества – то это скорее на радиолюбительский форум
а ежели чтоб работало – http://www.masterkit.ru/main/set.php?num=535

блин,картинка не открывалась,а на ней похоже коллекторный двигатель?

#4 Сообщение Алексей Доманов » Пн мар 02, 2009 17:47

Кирилл, стоп. твоя схема – регулировка мощности. речь идет о регулировки оборотов без потери мощности. как я понимаю.

для коллекторников есть отличная схема Игоря Капиноса на сайте.
реализовал ее для движка от стиралки. Доволен. стоимость – теже 10$. Единственное, что на моем движке есть штатный тахометр.

есть в нете схемы регулировки без потери мощности без тахометра.
но я сходу не найду, комп переставил, урлка потерялась.

#5 Сообщение xxxxxxxxx » Пн мар 02, 2009 18:14

#6 Сообщение Алексей Доманов » Пн мар 02, 2009 18:17

#7 Сообщение —(CORSAR)— » Пн мар 02, 2009 18:25

#8 Сообщение xxxxxxxxx » Пн мар 02, 2009 18:46

#9 Сообщение klev » Пн мар 02, 2009 19:06

на самом деле все они мощу теряют,это зависит от характеристик двигателя больше чем от регулятора.

а нужная мощность от работы зависит,ежели стальную болванку на 500 оборотах точить – конечно не хватит.
а ежели деревяшку на 1000 – выше крыши.

#10 Сообщение xxxxxxxxx » Пн мар 02, 2009 19:20

#11 Сообщение —(CORSAR)— » Пн мар 02, 2009 19:36

#12 Сообщение Alexander Pushkash » Пн мар 02, 2009 20:07

Коллеги, позвольте внести некоторую ясность в вопрос регулировки оборотов электродвигателей. Для начала напомню фундаментальные понятия: мощность есть произведение тока на напряжение (это в самом общем виде, для двигателей переменного тока, особенно трехфазных, соотношения существенно сложнее, но сути они не меняют). Двигатель потребляет некоторый ток, в зависимости от нагрузки. Для того, чтобы двигатель вертелся, к нему прикладывают напряжение. Зависимость скорости двигателя от приложенного напряжения и потребляемого тока есть так называемая “характеристика” электродвигателя.

В случае коллекторного двигателя постоянного тока существует еще понятие “противоЭДС двигателя”. Не вдаваясь в подробности констатирую факт: если двигатель постоянного тока (я имею в виду промышленные двигатели) просто подключить к напряжению, он сгорит, поэтому его включают через сопротивления, которые потом ступенчато убирают.

Если к любому двигателю приложить некоторую тормозящую силу, превышающую его возможности, то либо сгорит двигатель, либо вырубится защита питающей сети, либо сгорит что-нибудь в сети. Предельный ток, который может быть пропущен через двигатель, определяется параметрами его обмотки: либо статорной (двигатель переменного тока) либо роторной (якорной) – двигатель постоянного тока.

Вернемся к характеристикам двигателя. В случае постоянного тока и независимого возбуждения (электромагниты либо постоянные магниты в статоре) зависимость скорости от тока – это наклонная прямая в следующей системе координат: по вертикали (ордината Y) – скорость и напряжение, по горизонтали (абсцисса Х) – ток и нагрузка. Угол наклона зависит от параметров двигателя и схемы включения и он обычно достаточно велик. Отсюда следует, что при определенном напряжении скорость зависит от нагрузки. При малых напряжениях характеристика двигателя пересекается с абсциссой при небольших нагрузках, т.е. двигатель тормозится. Если двигатель асинхронный переменного тока, то там зависимость нелинейная и достаточно сложная, но суть та же.

“Регулировка скорости без потери мощности” вообще-то говоря означает “выравнивание” характеристики электродвигателя таким образом, чтобы она как можно более приближалась к горизонтали. Этим достигается независимость заданной скорости вращения от нагрузки. Естественно, реализуется эта “жесткость” характеристики изменением питающего напряжения. Реализуется вся эта заумь только лишь применением обратных связей по току и скорости, причем они как бы “вложены” одна в другую, что в терминах теории управления электродвигателями называется “подчиненным регулированием”. Есть еще широтно-импульсная модуляция, фазовое регулирование и т.д. и т.п., но все они обязательно основываются на отрицательных обратных связях.

Следует еще заметить, что характеристика двигателя никогда не бывает идеальной горизонталью; непременно присутствует так называемая ошибка регулирования.

Я, конечно, почти все забыл , но лет 20 назад я много работал с двигателями постоянного тока и системами промышленной автоматики и подчиненного регулирования.

Прошу прощения за многословие, но надеюсь, что оно поможет разобраться в вопросе. Если что не понятно, спрашивайте.

Добавить комментарий