Активное сопротивление: основные сведения, формулы и зависимости для цепи переменного тока

Реактивное и активное сопротивление

Сопротивлением в электротехнике называют такую величину, которая характеризует противодействие отдельность части электрической сети или ее элементов электрическому току. Это основано на том, что сопротивление изменяет электрическую энергию и конвертирует ее в другие типы. Например, в сетях с переменных электротоком происходят необратимые изменения энергии и ее передача между участниками этой электроцепи.

Сопротивление как физическую величину трудно переоценить, так как она является одной из ключевых характеристик электричества в сети и прямо или пропорционально определяет силу тока и напряжение. Этот материал познакомит с такими понятиями как: активное сопротивление и реактивное сопротивление в цепи переменного тока, как проявляется зависимость активного сопротивления от частоты.

Какое сопротивление называется реактивным, какое активным

Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.

Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.

Какие отличия

Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.

Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть.

Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.

В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.

От чего зависит активное сопротивление

Активное электросопротивление зависит от сечения проводника. Это значит, что полезным сечением при электротоке с высокой частотой будет только тонкий наружный слой проводника. Из этого исходит также то, что активностное электросопротивление только возрастает с увеличением частоты электротока переменного типа.

Для того чтобы уменьшить поверхностный эффект проводника, по которому течет электроток высокой частоты, его изготавливают трубчатым и покрывают напылением металла, хорошо проводящего электрический ток, например, серебром.

В чем измеряется реактивное сопротивление

Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах. В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения. Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.

Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2.

Как правильно измерять сопротивление

При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

Области проявления

Реактанс электросопротивления проявляется в емкости и индукции. Первое обуславливается наличием емкости проводниках и обмотках или включением в электрическую цепь переменного тока различных конденсаторов. Чем выше емкость потребителя и угловой частоты сигнала электротока, тем меньше емкостная характеристика.

Сопротивляемость, которую оказывает проводник переменному току и электродвижущей силе самоиндукции, называется индуктивным. Оно зависит от индуктивности потребителя. Чем выше его индуктивность и выше частота переменного электротока, тем выше индуктивное электросопротивление. Выражается оно формулой: xl = ωL, где xl — это электросопротивление индукции, L — индуктивность, а ω — угловая частота тока.

Емкостный реактанс электросопротивление проявляется, например, в конденсаторе, который накапливает электроэнергию в виде электромагнитного поля между своими обкладками. Индуктивное электросопротивление можно наблюдать в дросселе, который накапливает энергию в виде магнитного поля внутри своей обмотки.

Активностным же электросопротивлением может обладать любой резистор, линии электропередач, обмотки трансформатора или электрического двигателя.

Таким образом, активный резист и реактанс во многом отличаются друг от друга не только разницей по названию, но и по физическим свойствам. Первый вид превращает электроэнергию в другой вид и отдает ее в окружающую среду. Второй же — возвращает ее обратно в электросеть.


Активное сопротивление: основные сведения, формулы и зависимости для цепи переменного тока

Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную рабо­ту или в тепловую энергию, называется активным сопротивлением. К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электро­нагревательные устройства. Рассмотрим цепь переменного тока , в которую вклю­чено активное сопротивление. в цепи переменного тока с актив­ным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и Направление тока. Это значит, что ток и напряжение совпадают по фазе. Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отлов жим в выбранном масштабе по горизонтали вектор напряжения U. Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (=0), откладываем вектор тока I по направлению вектора напряжения. Сила тока в такой цепи определяется по закону Ома: I=U/R.


Билет 20. Вопрос 1. Переменный ток: понятие, получение, характеристики, единицы измерения.

Переме́нный ток, электрический ток, который периодически изменяется по модулю и направлению. Для передачи и распределения электрической энергии преимущественно используется Переменный ток благодаря простоте трансформации его напряжения почти без потерь мощности .Генераторы и двигатели Переменный токпо сравнению с машинами постоянного тока при равной мощности меньше по габаритам, проще по устройству, надёжнее и дешевле. Переменный ток может быть выпрямлен, например полупроводниковыми выпрямителями, а затем с помощью полупроводниковых инверторов преобразован вновь в Переменный ток другой, регулируемой частоты; это создаёт возможность использовать простые и дешёвые безколлекторные двигатели . Характеристики переменного тока.Средняя мощность переменного тока за период T равна:Pср. = Im*Umcos()/2, где  – сдвиг фаз между током и напряжением, Um и Im – максимальные (амплитудные) значения напряжения и силы тока.В цепи переменного тока с активной нагрузкой колебания силы тока совпадают по фазе с колебаниями напряжения. Если U = Umsin(wt), то I = Imsin(wt) и cos() =1.Действующие (эффективные) значения силы тока и напряжения рассчитываются по формулам:Iд = Im/корень 2, Uд =Um/корень2 .

Билет 21. Вопрос 1.. Режимы работы трансформатора: режим холостого хода, рабочий режим, режим короткого замыкания. КПД трансформатора. Режимом холостого хода трансформатора называют режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и при разомкнутых цепях других обмоток. Такой режим работы может быть у реального трансформатоpa, когда он подключен к сети, а нагрузка, питаемая от его вторичной обмотки, еще не включена. Рабочий режим — это работа трансформатора при подключенных потребителях или под нагрузкой (под нагрузкой понимается ток вторичной цепи — чем он больше, тем больше на­грузка). К трансформатору подключаются различного рода потребители: электрические двигатели, освещение и т. п. Режим короткого замыкания, возникающий случайно в процессе эксплуатации при номинальном первичном напряжении, является аварийным процессом, сопровождающимся весьма большими токами в обмотках. Многократное повышение токов по сравнению с номинальными (в 10-20 раз) может привести к повреждению изоляции обмоток в следствии нагрева и к разрушению обмоток механическими силами, возникающими при этом режиме между обмотками. Коэффициентом полезного действия трансформатора называется отношение активной мощности, передаваемой нагрузке, к активной мощности, подводимой к трансформатору. КПД трансформатора имеет высокое значение. У силовых трансформаторов небольшой мощности он составляет примерно 0,95, а у трансформаторов мощностью в несколько десятков тысяч киловольт-ампер доходит до 0,995. Определение КПД по формуле с использованием непосредственно измеренных мощностей P1 и P2 даёт большую погрешность. Удобнее эту формулу представить в другом виде:КПД=P2/P1 +сумарное дельта Р.

Читайте также:  Как научиться паять: выбор паяльника и припоя, основные рекомендации для новичков

Билет 22. Вопрос 1.Соединение фаз генератора и потребителей треугольником: симметричная и несимметричная нагрузка, векторная диаграмма.

АВС начало фазы, хуz – конец фазы, АА’ –линейный провод. При соединении треугольником начало фазы соединяется с концом предидущей фазы и смещается на 120 градусов. при симметричной нагрузке, соединенной треугольником, линейный ток в √3 раз больше фазного тока. Iл=корень 3 >Iф. Uл=Uф. В трехфазных цепях различают симметричную (сопротивление в каждой фазе нагрузке одинаковое) несимметричную (сопротивление нагрузки хотя бы в одной фазе отличается) нагрузок. При симметричной нагрузки достаточно иследовать одну фазу и все умножить на 3. При несимметричной необходимо иследовать каждую фазу а потом сложить. При симметричной нагрузке фазные напряжения отдельных фаз равны между собой. При несимметричной нагрузке трехфазной системы симметрия токов и напряжений нарушается. Однако в четырехпроводных цепях часто пренебрегают незначительной несимметрией фазных напряжений. В этих случаях между линейными и фазными напряжениями существует зависимость: Uл=sqrtUф.

Цепь переменного тока с активным сопротивлением

Когда в электрическую цепь переменного тока подключается активное сопротивление R , то под воздействием разницы потенциалов источника в цепи начинает течь ток I . В тех случаях, когда изменение напряжения происходит по синусоидальному закону, который выражается, как u = Um sin ωt , то изменение тока i также идет по синусоиде:

Так что получается, что изменение напряжения и тока происходят по одинаковым законам. При этом через нулевое значение они проходят одновременно и своих максимальных значений также достигают одновременно. Из этого следует, что когда в электрическую цепь переменного тока подключается активное сопротивление R , то напряжение и ток совпадают по фазе.

Мощность, ток, напряжение

Если взять равенство Im = Um / R и каждую из его частей разделить на √2 , то в итоге получится ни что иное, как закон Ома, применимый для той цепи, которая рассматривается: I = U / R .

Таким образом, получается, что это основополагающий закон для той цепи, которая имеет в своем составе только активное сопротивление, с точки зрения математики имеет такую же форму, что и для цепи тока постоянного.

Электрическая мощность

Такой показатель, как электрическая мощность P для цепи, имеющей в своем составе активное сопротивление, равняется произведению мгновенного значения напряжения U на мгновенное значение силы тока i в любой момент времени. Из этого следует, что в цепях переменного тока, в отличие от цепей тока постоянного, мгновенная мощность P – величина непостоянная, а ее изменение происходит по кривой. Для того чтобы получить ее графическое представление, необходимо ординаты кривых напряжения U и силы тока i перемножить при разных углах ωt . Мощность изменяется по отношению к изменению тока с двойной частотой ωt . Это означает, что половине периода изменения напряжения и тока соответствует один период изменения мощности. Следует заметить, что абсолютно все значения, которые может принимать мощность, являются положительными величинами. С точки зрения физики это означает, что от источника к приемнику передается энергия. Своих максимальных значений мощность достигает тогда, когда ωt = 270° и ωt = 90° .

В практическом отношении о той энергии W , которую создает электрический ток, принято судить по средней мощности, выражаемой формулой Рср = Р , а не по мощности максимальной. Ее можно определить, перемножив на время протекания тока среднее значение мощности W = Pt .

Относительно линии АБ , соответствующей среднему значению мощности P , кривая мгновенной мощности симметрична. По этой причине

Если использовать закон Ома, то можно выразить активную мощность в следующем виде:

P = I2R или P = U2 / R .

Специалисты в области электротехники ту среднюю мощность, которую потребляет активное сопротивление, чаще всего именуют или просто мощностью, или активной мощностью, а для ее обозначения используется буква P .

Поверхностный эффект

Необходимо особо отметить такую особенность проводников, включенных в сеть переменного тока: их активное сопротивление во всех случаях оказывается больше, чем если бы они были включены в сеть тока постоянного. Причина этого состоит в том, что переменный ток не протекает равномерно распределяясь по всему поперечному сечению проводника, как ведёт себя постоянный ток, а выводится на его поверхность. Таким образом, получается, что при включении проводника в цепь переменного тока его полезное сечение оказывается значительно меньшим, чем при включении в цепь тока постоянного. Именно поэтому его сопротивление возрастает. В физике и электротехнике это явление называется поверхностным эффектом.

То, что переменный ток распределяется по сечению проводника неравномерно, объясняется действием электродвижущей силы самоиндукции. Она индуцируется в проводнике тем магнитным полем, которое создается током, проходящим по нему. Необходимо заметить, что действие этого магнитного поля распространяется не только на окружающее проводник пространство, но и на внутреннюю его часть. По этой простой причине те слои проводника, которые располагаются ближе к его центру, находятся под воздействием большего магнитного потока, чем те слои, что располагаются ближе к его поверхности. Соответственно, электродвижущая сила самоиндукции, которая возникает во внутренних слоях, существенно больше, чем та, что образуется в слоях внешних.

Электродвижущая сила самоиндукции является существенным препятствием для изменения тока, и поэтому он будет следовать преимущественно по поверхностным слоям проводника. Необходимо также отметить, что сопротивление активных проводников в цепях переменного тока существенно зависит от частоты: чем она больше, тем выше ЭДС самоиндукции, и поэтому ток в большей степени подвергается вытеснению на поверхность.

Активное сопротивление в цепи переменного тока

На векторных диаграммах можно показать, что ток и напряже­ние совпадают по фазе (рис. 52,а) или э. д.с. сдвинуты по фазе на некоторый угол (рис. 52,6). Условно принято считать, что векторы перемещаются в направлении против движения часовой стрелки.

Если векторы имеют различную длину, следовательно, их дейст­вующие значения разные (см. рис. 52, б).

§ 52. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную рабо­ту или в тепловую энергию, называется активным сопротивлением.

Читайте также:  Индукционный паяльник: принцип работы, устройство и особенности выбора паяльной станции

К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электро­нагревательные устройства.

Рассмотрим цепь переменного тока (рис. 53), в которую вклю­чено активное сопротивление. В такой цепи под действием перемен­ного напряжения протекает переменный ток. Изменение тока в Цепи, согласно закону Ома, зависит только от изменения напряже­ния, подключенного к ее зажимам. Когда напряжение равно нулю, ток в цепи также равен нулю. По мере увеличения напряжения ток в Цепи возрастает и при максимальном значении напряжения ток становится наибольшим. При уменьшении напряжения ток убывает. Когда напряжение изменяет свое направление, ток также изменяет свое направление и т. д.

Из сказанного следует, что в цепи переменного тока с актив­ным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и Направление тока. Это значит, что ток и напряжение совпадают по фазе.

Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отлов жим в выбранном масштабе по горизонтали вектор напряжения Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (=0), откладываем вектор тока I по направлению вектора напряжения.

Сила тока в такой цепи определяется по закону Ома:

В этой цепи среднее значение мощности, потребляемой активным сопротивлением, выражается произведением действующих значения тока и напряжения.

Пример. К цепи переменного тока с активным сопротивлением r=55 ом подключен генератор, максимальное значение напряжения которого Um=310,2 в.

показание вольтметра, подключенного к зажимам генератора; показание амперметра, включенного в цепь; среднее значение мощности, потребляемой сопротивлением.

Решение. Известно, что электроизмерительные приборы, включенные в цепь переменного тока, измеряют действующие значения. Поэтому показание вольтметра, измеряющего напряжение,

Показание амперметра, измеряющего действующее значение тока,

Среднее значение активной мощности, потребляемой сопротивлением, Р=220х4 = 880 вт или Р=I2r=42×55=16×55=880 вт.

§ 53. ИНДУКТИВНОСТЬ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Прохождение электрического тока по проводнику или катушки сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 54,а), в которую включена катушка индуктивности, имеющая небольшое количество витком проволоки сравнительно большого сечения, активное сопротивления которой можно считать практически равным нулю.

Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

(55)

где L — индуктивность катушки,

— скорость изменения тока в ней.

Электродвижущая сила самоиндукции, согласно правилу Лен­ца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д.с. генератора, то она препятствует прохож­дению переменного тока. При расчетах это учитывается по индук­тивному сопротивлению, которое обозначается ХL и измеряется

в омах. Таким образом, индуктивное сопротивление катушки ХL зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в ка­тушке (от частоты ) и от индуктивности катушки L:

где XL, — индуктивное сопротивление, ом,

ώ — угловая частота переменного тока, рад/сек,

L — индуктивность катушки, гн.

Так как угловая частота переменного тока , то индуктив­ное сопротивление

где, f—-частота переменного тока, гц.

Пример. Катушка, обладающая индуктивностью L=0,5 гн, присоединена к источнику переменного тока, частота которого f=50 гц. Определить:

1) индуктивное сопротивление катушки при частоте f=50 гц;

2) индуктивное сопротивление этой катушки переменному току, частота ко­торого f=800 гц.

Решение. Индуктивное сопротивление переменному току при f=50 гц

При частоте тока f=800 гц

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивлений катушки ХL равно нулю. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется э. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток.

Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.

На графике (рис. 54, в) переменный ток показан в виде синусоиды (сплошная линия). В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д.с. самоиндукции изменяет свое направление и увеличивается препятствуя убыванию силы тока. В третью четверть периода том изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Активное сопротивление в цепи переменного тока

Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R.
Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону

u = Umsinωt

Найдём ток и мощность в цепи.

Ток в цепи переменного тока с активным сопротивлением.

По закону Ома найдем выражение для мгновенного тока:

где Im = Um/R — амплитуда тока

Из уравнений напряжения и тока видно, что начальные фазы обеих кривых одинаковы, т. е. напряжение и ток в цепи с сопротивлением R совпадают по фазе. Это показано на графиках и векторной диаграмме (рис. 13.1, б, б).

Действующий ток найдем, разделив амплитуду на √ 2:

Формулы (13.1) выражают закон Ома для цепи переменного тока с сопротивлением R. Внешне они ничем не отличаются от формулы для цепи постоянного тока, если переменные напряжение и ток выражены действующими величинами.

Мгновенная мощность в цепи переменного тока с активным сопротивлением.

При переменных величинах напряжения и тока скорость преобразования электрической энергии в приемнике, т. е. его мощность, тоже изменяется. Мгновенная мощность равна произведению мгновенных величин напряжения и тока: p = Umsinωt * Imsinωt = UmImsin 2 ωt

Из тригонометрии найдём

Более наглядное представление о характере изменения мощности в цепи дает график в прямоугольной системе координат, который строится после умножения ординат кривых напряжения и тока, соответствующих ряду значений их общего аргумента — времени t. Зависимость мощности от времени — периодическая кривая (рис. 13.2). Если ось времени t поднять по чертежу на величину р = Pm√2 = UmIm√2, то относительно новой оси t’ график мощности является синусоидой с двойной частотой и начальной фазой 90°:

Таким образом, в первоначальной системе координат мгновенная, мощность равна сумме постоянной величины Р = UmIm√2 и перемен- ной р’:

р = Р + р’

Анализируя график мгновенной мощности, нетрудно заметить, что мощность в течение периода остается положительной, хотя ток и напряжение меняют свой знак. Это получается благодаря совпадению по фазе напряжения и тока.

Читайте также:  Выбор мультиметра: как купить хороший прибор, рейтинг устройств для дома и ремонта автомобиля

Постоянство знака мощности говорит о том, что направление потока электрической энергии остается в течение периода неизменным, в данном случае от сети (от источника энергии) в приемник с сопротивлением R, где электрическая энергия необратимо преобразуется в другой вид энергии. В этом случае электрическая энергия называется активной.

Если R — сопротивление проводника, то в соответствии с законом Ленца — Джоуля электрическая энергия в нем преобразуется в тепло.

Активная мощность для цепи переменного тока с активным сопротивлением

Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.

Активная мощность — среднее арифметическое мгновенной мощности за период.

Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).

Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.

В этом случае часть площади Sp , находящаяся выше прямоугольника, точно укладывается в оставшуюся незаштрихованной его часть:

P = UI

Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:

P = UI = I 2 R = U 2 R

С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) [см. выражение (13.2)].

Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:

Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.

Активное сопротивление цепи переменного тока

Активным или ваттным сопротивлением называется всякое сопротивление, поглощающее электрическую энергию или вернее превращающее ее в другой вид энергии, например в тепловую, световую или химическую.

Потери энергии, а, следовательно, и активное сопротивление в электрической цепи при переменном токе всегда больше потерь энергии в этой же цепи при постоянном токе. Причина этого заключается в том, что в цепях переменного тока потери энергии обусловлены не только обычным омическим сопротивлением проводников, но и многими другими причинами.

Рассмотрим некоторые из этих.

Так, например, наличие конденсатора в цепи переменного тока связано с дополнительными потерями энергии в результате периодического (с частотой переменного тока) изменения поляризации диэлектрика или, попросту говоря, в результате непрерывного переворачивания взад и вперед молекулярных парных зарядов. При этом происходит нагревание диэлектрика, т. е. электрическая энергия превращается в тепловую. Эти потери энергии называются диэлектрическими потерями.

Кроме диэлектрических потерь, как уже говорилось раньше, происходят потери энергии из-за утечки тока вследствие несовершенства изоляции между пластинами конденсаторов. Эти потери называются потерями утечки.

Вокруг всякого переменного тока существует переменное магнитное поле. Следовательно, во всех окружающих железных предметах происходит непрерывное переворачивание молекулярных магнитиков в такт с частотой переменного тока. В результате железные предметы, находящиеся в поле переменного тока, нагреваются, т. е электрическая энергия превращается в тепловую. Эти потери называются потерями на гистерезис.

Благодаря электромагнитной индукции переменный электрический ток наводит в близлежащих замкнутых электрических цепях индукционные токи, что связано с нагреванием этих цепей, т. е. с дополнительными потерями энергии.

Кроме того, такие же индукционные круговые токи возникают не только в замкнутых электрических цепях, но и в близлежащих металлических предметах и нагревают их. Эти токи называются токами Фуко. Возникновение токов Фуко также сопряжено с потерями электрической энергии.

Токи Фуко не всегда являются вредными. Например, на принципе токов Фуко основана защита радиоприборов медными или алюминиевыми экранами от переменных магнитных полей высокой частоты.

Наконец, при очень высоких частотах цепь переменного тока может излучать электромагнитные волны (радиоволны), что связано с потерями на излучение.

Наличие всех этих потерь увеличивает активное сопротивление цепи переменному току.

Опыт показывает, что при высоких частотах и омическое сопротивление проводника оказывается значительно большим, чем при постоянном токе.

Для объяснения этого явления увеличим мысленно сечение проводника (рис. 1) и посмотрим, что происходит в нем при прохождении по нему переменного тока. Вдоль проводника взад и вперед с частотой переменного тока движется огромное количество электронов.

Рисунок 1. Поверхностный эффект, как фактрор увеличения активного сопротивления в цепи переменного тока. Ток вытесняется магнитным полем на поверхность проводника (а), поэтому у поверхности проводника плотность тока больше, чем внутри проводника (б).

До сих пор нам было известно, что движущийся по проводнику переменный поток электронов создает вокруг него переменное магнитное поле. Теперь же, когда мы заглянем внутрь проводника, мы увидим, что магнитное поле имеется и внутри проводника. Это вызвано тем, что каждый электрон при движении создает вокруг себя магнитное поле, а так как часть электронов движется вблизи оси проводника, то они создают магнитное поле не только во вне, но и внутри проводника.

Продолжая присматриваться к происходящему внутри проводника, мы заметим, что наиболее быстро движутся электроны, находящиеся у поверхности проводника, а по мере приближения к середине проводника амплитуда (размах) колебаний электронов становится все меньше и меньше.

Почему же электроны колеблются с различными амплитудами в разных точках сечения проводника?

Это явление также имеет свое объяснение. Вспомним, что при всяком изменении скорости движения электрона на него действует ЭДС самоиндукции, противодействующая этому изменению. Вспомним также, что ЭДС самоиндукции зависит от числа магнитных силовых линий вокруг движущегося электрона. Чем большим числом магнитных силовых линий охватывается электрон, тем труднее ему совершать колебательное движение.

Теперь становится ясным, почему электроны, находящиеся у поверхности проводника, колеблются с большой амплитудой, а электроны, находящиеся глубоко внутри проводника, — с малой. Ведь первые охватываются только теми магнитными силовыми линиями, которые расположены вне проводника, а вторые охватываются и внешними и внутренними магнитными силовыми линиями.

Таким образом, плотность переменного тока получается большей у поверхности проводника и меньшей внутри его.

На рис. 1,б плотность тока характеризуется количеством красных точек. Как видим, наибольшая плотность тока получается около самой поверхности проводника.

При очень высоких частотах противодействие ЭДС самоиндукции внутри проводника становится настолько сильным, что все электроны движутся только по поверхности проводника. Это явление и называется поверхностным эффектом. Так как активное сопротивление проводника зависит от его сечения, а полезным сечением при токе высокой частоты оказывается только тонкий наружный слой проводника, то вполне понятно, что его активное сопротивление увеличивается с повышением частоты переменного тока.

Для уменьшения поверхностного эффекта проводники, по которым протекают токи высокой частоты, делают трубчатыми и покрывают их слоем хорошо проводящего металла, например серебра.

В целях борьбы с явлением поверхностного эффекта применяют также провода специальной конструкции, так называемый литцендрат.

Такой проводник свивают из отдельных тонких медных жилок, имеющих эмалевую изоляцию, причем скрутка жилок производится таким образом, чтобы каждая из них проходила поочередно то внутри проводника, то снаружи его.

Явление поверхностного эффекта особенно сильно сказывается в железных проводах, в которых вследствие большой магнитной проницаемости железа внутренний магнитный поток оказывается особенно большим и поэтому явление поверхностного эффекта становится очень заметным даже при сравнительно низких (звуковых) частотах.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Добавить комментарий