Мощность переменного тока: формулы, составляющие и особенности применения

Особенности переменного тока

Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.

Нормы мощности в сети переменного тока

Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.

Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.

Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.

Характеристики

Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.

Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.

Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.

Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.


Формула расчета мощности по току и напряжению электросхемы

Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.

Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.

Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв по току. Другие потребители при уборке отключены.

Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.

На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.
Читайте также:  Мультиметр: сколько стоит прибор, и от чего зависит его цена, чем отличается цифровой тестер от аналогового

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Поэтому рассматриваем вначале наиболее простой вопрос.

Графики и формулы под однофазное напряжение

Как работает резистор

На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.

Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.

Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.

Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.

Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.

На резисторе не создается реактивных потерь.

Как работает индуктивность

Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.

Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.

Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:

  1. активной, обозначаемой индексом PL;
  2. реактивной QL.

Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.

Как работает реальная схема со всеми видами сопротивлений

В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.

Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.

На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.

В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.

Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.

В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.

Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.

В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.

А поскольку они все идентичные, то их просто утраивают.

Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Если пометить фазное выражение буквой ф. например Pф, томожно записать:

Аналогично будет вычисляться реактивная составляющая

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Старые аналоговые приборы показаны на этой картинке.

Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:

  • ВА — (русское), VA (международное) вольтампер для полной величины мощности;
  • Вт —(русское), var (международное) ватт —активной;
  • вар (русское), var (международное) — реактивной.

Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.

Многие современные цифровые приборы способны осуществлять эту функцию автоматически.

Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.

Как рассчитывается мощность переменного тока – формула расчета

Переменный электроток способен изменяться по направлению или своей величине внутри электрической цепи. Мощность переменного тока представляет собой произведение тока и напряжения.

Мощность в цепи переменного тока

Внутри схемы переменного электротока различается три вида мощностей: активного типа или Р, реактивного типа или Q, и полного типа или S. В первом случае стандартной единицей замеров является Ватт (Вт или W), при этом формула для вычисления активных мощностных параметров:

P = U × I × cos φ.

Для замеров мощности реактивного типа применяется специальный вольт-ампер с обозначением «Вар» или Var.

Читайте также:  Ограничители перенапряжения (ОПН): принцип действия, классификация и область применения

Данной величиной характеризуются нагрузки, которые формируются внутри конструкций электротехнического типа под воздействием колебаний электромагнитных полей в цепях переменного синусоидального тока.

Расчет осуществляется на базе среднеквадратичных показателей напряжения и токовых параметров, умноженных на угловую синусоиду фазного сдвига, согласно значениям:

Q = U × I × sin φ.

В условиях значений на уровне 0/+90° синусовая величина будет положительной, а для показателей в пределах 0/-90° — только отрицательной. Замеры полной электромощности осуществляются исключительно в вольт-амперах (В·А или V·A).

Зависимость мощности от времени для переменного и постоянного тока

Величину, соответствующую произведению стандартного напряжения в зажимной области с показателями электротока периодического типа внутри цепи, целесообразно рассчитывать в соответствии с формулами:

S = U × I или S = √Р 2 + Q 2 , где

  • значение Р представлено активной мощностью;
  • значение Q 2 — показатель реактивной мощности.

Мощностные показатели электротока переменного типа являются произведением токовых данных на напряжение, при этом уровень будет нулевым в условиях прохождения через нуль, но обязательно максимальным на пиковой амплитуде.

Несмотря на сложность измерения мощности, важно помнить, что такие данные не показательны, поэтому с практической точки зрения интерес представляет активная средняя мощность в определенном периоде.

В однофазной цепи

Для однофазной цепи используется формула определения полной мощности: S = U × I, где

  • S — показатели полных мощностных характеристик (Ва);
  • I — уровень действующей силы электротока с учетом обмотки генератора (А);
  • U — параметры расчетного действующего значения напряжения в генераторе (В).

Полные мощностные характеристики, учитываемые при стандартных самостоятельных расчетах, влияют на габариты генератора с переменными показателями электрического тока, что обусловлено поперечным сечением и числом витков обмоточных проводов, а также толщиной изоляционного материала. Для активного и реактивного сопротивления важна мощность, расходуемая при активном сопротивлении, и в реактивной части.

Однофазные электрические цепи переменного тока

Реактивные мощностные показатели обуславливаются энергетическими колебаниями в условиях формирования и потери электрических или магнитных полей. Запасаемая внутри поля такого сопротивления электроэнергия поступательно возвращается обратно на генератор, который подключается к стандартной электрической цепи.

В трехфазной цепи

Мощностные показатели переменного тока при равномерной трехфазной нагрузке определяются наличием равноценного тока, протекающего по проводникам фазы. В этом случае показатели силы тока в условиях использования нулевого проводника составляют «О». Формула для расчета мощности переменного тока в условиях трехфазной сети: Р = 3 × U φ × I × соs(φ).

Симметричная (равномерная) нагрузка фаз в трехпроводной цепи трехфазного тока

Протекание внутри фазных проводников различных по величине токов представляет собой несимметричную, или неравномерную нагрузку. При этом именно несимметричная нагрузка сопровождается протеканием тока по нулевым или нейтральным проводам, поэтому уровень мощностных показателей определяется в соответствии со стандартной и общеизвестной формулой:

Средняя мощность в активной нагрузке

Мощностные параметры электросети или любой установки являются наиболее важными данными практически любого электрического прибора. Передача проходящих или потребляемых мощностных характеристик активного типа осуществляются в течение определенного периода времени.

Табличные значения средних мощностных характеристик основных бытовых приборов

УстройствоПоказатели
Зарядное устройство2,0 Вт/час
Люминесцентные лампы «ДРЛ»50 Вт/час и более
Электрический чайник1,5 кВт/час
Акустические системы30 Вт/час
Стиральная машина2,5 кВт/час
Мойка под высоким давлением3,5 кВт/час
Инверторы полуавтоматического типа3,5 кВт/час
Кухонный блендер1,0-1,2 кВт/час
Микроволновая СВЧ-печь1,8 кВт/час
Кухонные тостеры1,2 кВт/час
Телевизор0,2 кВт
Холодильник0,4 кВт
Пылесос1,0 кВт
Компьютер стационарный0,55 кВт
Электрическая плита2,5 кВт/час
Фен для сушки волос1,0 кВт/час
Утюг1,0 кВт/час
Электрическая духовка1,2 кВт/час
Электрический обогреватель1,4 кВт/час

Мощность при наличии сдвига фаз между током и напряжением

В условиях переменного электротока совпадения в токовом направлении и напряжении отмечаются только при отсутствии катушечной индукции и конденсаторов. В этом случае векторное направление тока и напряжения идентичны. Присутствие в схеме катушек и конденсатора сопровождается совпадением токовых фаз и показателей напряжения, но векторное вращение происходит на одинаковой скорости и при неизменных параметрах угла.

Фазовое смещение или сдвиг совпадает с углом, который наблюдается между векторными радиусами токовых показателей и параметров напряжения, а отставание в этих критериях провоцирует несовпадение.

Сдвиг фаз переменного тока и напряжения

При этом мощностные характеристики являются отрицательными за счет произведения положительной и отрицательной величин. В подобных условиях электрическая цепь внешнего типа становится стандартным источником электроэнергии. Незначительный объем энергии, поступающей в цепь на положительных показателях мощности, осуществляет возврат только при наличии отрицательных значений.

Баланс мощностей

В соответствии с общепринятыми характеристиками, баланс в электрической цепи базируется на законе сохранения энергии, поэтому суммарные потребляемые и отдаваемые мощности должны быть равными.

При расчетах учитываются показатели эквивалентного сопротивления и знакомый большинству из курса физики закон Ома.

Допускаются небольшие расхождения в значениях, что обуславливается стандартными округлениями, осуществляемыми в процессе выполнения самостоятельных расчетов. Таким образом, вне зависимости от уровня сложности создаваемой цепи баланс обязательно должен сходиться, что является гарантией сохранения работоспособности и полной безопасности эксплуатации.

Мощность в цепи переменного и постоянного тока

В статье мы расскажем про мощность в цепи переменного и постоянного тока, а также мгновенную, активную, реактивную и полную мощность, а также что такое коэффициент мощности. Всех их формулы и примеры на нахождение мощности.

Мощность, генерируемая потоком через проводник тока I с напряжением U на его концах, выражается следующей формулой:

Используя закон Ома, можно определить формулу для мощности с известными сопротивлением и напряжением:

Аналогично, формула мощности может быть определена в зависимости от сопротивления и тока:

Задачи на нахождение мощности

Задача 1

Напряжение 5 В было измерено на концах резистора 10 Ом. Какая будет мощность?

Решение:

Применить второе уравнение: Р = 5 2 /10 = 25/10 = 2,5 Вт

Задача 2

Держатель лампы, несущий опорной мощности P = 21Вт при напряжении U = 12 В для подачи питания накала питания может быть использован со следующим параметры: U = 12В I max= 1А. Какой ток протекает при нормальной работе лампы?

Решение:

Давайте посчитаем, какой ток протекает при нормальной работе лампы:

P = U * I
I = P / U
I = 21 Вт / 12 В
I = 1,75 A

Это означает, что источник питания с заданными параметрами не подходит для питания этой лампы.

Мощность в цепи переменного тока

Мощность в цепи переменного тока в физики и обычной жизни одно из базовых понятий, которое нужно понимать перед началом работы с электроприборами. Далее вы увидите основные формулы мощности и их применение в задачах.

Мгновенная мощность

При рассмотрении энергетических процессов в цепях переменного тока удобно использовать разные типы энергии. Мгновенная мощность равна произведению мгновенных значений тока и напряжения на части цепи:

где: U и I — эффективные значения напряжения и тока, а φ и ω — соответственно разность фаз между током и напряжением и угловой частотой (пульсация).

Активная мощность

Активная мощность характеризуется текущими потерями энергии в течение 1 секунды в активных компонентах цепи (для нагрева, излучения или механических работ). Он измеряется в ваттах и ​​определяется мгновенным значением мощности за период:

Реактивная мощность

Реактивная мощность связана с реактивными сопротивлениями, которые периодически накапливают энергию, а затем возвращают ее источнику, но сами не поглощают энергию. Единица реактивной мощности вар. Реактивная мощность может быть определена по формуле:

Реактивная мощность положительна при токе, задержанном по отношению к напряжению (φ>0), и отрицательна при токе, который обгоняет напряжение (φ 2

Если к конденсатору С приложено напряжение действующего значения U, то: Q = -ω*C*U 2

Полная мощность

Полная мощность (кажущаяся) определяется произведением эффективных значений напряжения и тока в сечении провода:

S = I*U

Кажущаяся силовая установка называется ВА (вольтампер). Отношение активной мощности к полной мощности P/S = cosφ называется коэффициентом мощности.

Активная, реактивная и полная мощность связаны друг с другом следующими отношениями:

Задача 3. Рассчитайте угол сдвига фаз цепи, в которой активная мощность составляет 1 кВт, а реактивная мощность — 0,2 кВар.

Решение.

Так мы добрались до конца второго, наверное, самого сложного для понимания руководства по электротехнике. Я не знаю, как это будет принято читателями. Написав это, я должен был решить серьезную дилемму: на самом деле ничего не объясняло простоту и поверхностные вопросы или серьезную трактовку темы. Проблема в том, что последнее возможно только на основе понятий из высшей математики, о которых большинство читателей, вероятно, не имеют ни малейшего понятия. Тем не менее, я должен был быть последовательным. В первой части я использовал элементы высшей математики, поэтому мне пришлось сделать это во второй, хотя я «простил» символический метод описания синусоидальных переменных, но я надеюсь, что те, кто интересуется электротехникой, хотя бы слышали об интегралах, дифференциалах и производных функций. Как я уже писал во введении: вы можете изучать электротехнику только самостоятельно! Это требует прочной основы в области математики, желание и трудолюбие. Однако это не простая задача, это совсем другая проблема.

Видеоурок по мощности тока

Ниже мы покажем вам простое объяснение по мощности, в котором подведем итоги по данной статье!

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Мощность переменного тока – понятие, виды и формулы

Общее понятие

Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.

Читайте также:  Как выбрать паяльник для полипропиленовых труб: особенности устройств, рекомендации, обзор производителей

В переменной электрической цепи выделяется 3 вида мощности:

  • активный P;
  • реактивный Q;
  • полного типа S.

В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.

Применяется концепция комплексных чисел для связывания всех трех видов мощности. Это понятие обозначает, что в переменной цепи нагрузка выражается подобным числом так, что активная разновидность представляется действительной составляющей. Реактивный показатель выступает мнимым показателем, а полная мощность показывается в форме модуля. В этих расчетах принимает участие угол сдвига фаз φ, который является аргументом баланса мощностей в цепи переменного тока.

Активная мощность

Активная скорость преобразования выражается также через взаимное отношение силы потока, напряжения к значению активной составляющей сопротивления. В магистрали синусоидального и несинусоидального движения электронов активная нагрузка приравнивается к сумме аналогичных значений на отдельных участках.

Для определения среднего периодического размера используется активная мощность переменного тока, формула расчета P = U . I . cos φ (косинус), где:

  1. U — мощность.
  2. I — сила потока.
  3. φ – угол смещения фаз.

Средний показатель мгновенной скорости преобразования в однофазной цепи берется в виде среднеквадратичного значения тока и напряжения с определенным углом сдвига. В цепях несинусоидального электричества мощность приравнивается к сумме соответствующих показателей отдельных перемещений. С помощью активной мощности характеризуется интенсивность необратимого видоизменения электроэнергии в другие разновидности, например, электромагнитную или тепловую.

Проходящая мощность используется в качестве активной в концепции длинных магистралей для анализа электромагнитных течений, протяженность которых сопоставляется с размерностью волны. Искомое значение рассчитывается как разница между понижающейся и отражающейся мощностями. От свойств коэффициента углового смещения зависят полученные показатели отрицательной или положительной нагрузки активного типа.

Реактивная характеристика

Для обозначения применяется дополнительно единица вольт-ампер реактивный (вар). В русских аналогах используется вар, а международные специалисты применяют var. В РФ единица допускается для электротехнических расчетов в форме внесистемного значения.

Нахождение производится по формуле P = U . I . sin φ (синус), где:

  1. U — среднеквадратичная мощность.
  2. I — среднеквадратичная сила потока.
  3. φ – угол фазного смещения, значения синуса, определяются по таблицам.

При диапазоне показателя от 0 до 90º (ток отстает от напряжения, а нагрузка носит активно-индуктивный вид) синус φ будет иметь положительное значение. При угловом сдвиге от 0 до -90º (поток электронов опережает нагрузку, мощность отличается активно-емкостным свойством) константа всегда показывает отрицательный знак. Реактивная мощность характеризует напряженность, которая возникает в электромеханических приборах и цепях при изменении энергетических волн поля в магистрали переменного синусоидального потока.

В физическом смысле реактивная нагрузка показывает энергию, которая перекачивается от источника тока на конденсаторы, индукторы, двигательные обмотки, а впоследствии возвращается к источнику за один колебательный период. Реактивная мощность не принимает участия в работе электротока. В случае положительной характеристики устройство потребляет, а нагрузка с отрицательным знаком говорит о производстве энергии.

Это обстоятельство рассматривается в условном контексте, т. к. почти все энергопотребляющие приборы, например, двигатели асинхронной работы, а также полезная нагрузка, подаваемая через трансформатор, относятся к активно-индуктивным видам. Синхронные двигатели электростанций одновременно производят и потребляют энергию в зависимости от максимальной величины электротока возбуждения в роторных обмотках. Эта особенность применяется для координации уровня нагрузки в магистрали в электротехнике.

С помощью современных преобразователей производится компенсация реактивной нагрузки во избежание перегрузок и для увеличения коэффициента мощности электроустановок. Приборы более точно оценивают размер энергии, которая поступает в обратном направлении от индуктора к источнику переменного тока.

Полная нагрузка

Показатель используется в физике для описания потребляемой мощности, которая прилагается к подводящим агрегатам электросети с использованием резисторов. Суммируются параметры ЭДС распределительных щитков, кабелей, проводов, ЛЭП, трансформаторов.

Полную нагрузку можно рассчитать по формуле S = U . I, где:

  1. S — параметр полной нагрузки (В/а).
  2. U — расчетная нагрузка в генераторе.
  3. I — комплексный показатель силы тока в сочетании с обмоточным значением.

Параметр темпа преобразований зависит от характеристик применяемого тока, а не от свойств фактически использованной нагрузки. По этой причине полная мощность распределительных электрощитов и трансформаторных агрегатов измеряется в вольт-амперах, а значение ватт к ней не применяется.

Мощность переменного тока: формулы, составляющие и особенности применения

Энергия, поставляемая источником электродвижущей силы во внешнюю цепь, испытывает превращения в другие виды энергии. Если в цепи имеется только активное сопротивление, то вся энергия превращается в тепло, выделяемое на сопротивлении . Между током и напряжением сдвиг фаз отсутствует. Кроме того, в течение малого промежутка времени переменный ток можно рассматривать как постоянный. Поэтому мгновенная мощность, развиваемая переменным током на сопротивлении:

.

Хотя ток и напряжение бывают как положительными, так и отрицательными, мощность, равная их произведению, всегда положительна. Однако она пульсирует, изменяясь от нуля до максимального значения с частотой, равной удвоенной частоте переменного тока. На рис. 7.12 показана временная зависимость тока, напряжения и мощности переменного тока, выделяемой на активном сопротивлении. Ясно, что средняя передаваемая мощность меньше максимальной и равна половине максимальной мощности. Среднее значение и за период равно . Это можно объяснить следующим образом: , а за полный цикл среднее значение равно среднему значению . Поэтому среднее значение мощности будет равно

.

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Как известно, потребляемая от источника переменного тока энергия складывается из двух составляющих:

1. Активной энергии

2. Реактивной энергии

1. Активная энергия — та часть потребляемой энергии, которая целиком и безвозвратно преобразуется приемником в другие виды энергии.

Пример: Протекая через резистор, ток совершает активную работу, что выражается в увеличении тепловой энергии резистора. Вне зависимости от фазы протекающего тока, резистор преобразует его энергию в тепловую. Резистору не важно в каком направлении течет по нему ток, важна лишь его величина: чем он больше, тем больше тепла высвободится на резисторе (количество выделенного тепла равно произведению квадрата тока и сопротивления резистора).

Реактивная энергия — та часть потребляемой энергии, которая в следующую четверть периода будет целиком отдана обратно источнику.

РЕЗОНАНС НАПРЯЖЕНИЙ

Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.

В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Полная аналогия – равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) – возможна не во всех случаях.

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи имеет место при определенном соотношении ее параметров r, L, C, когда резонансная частота цепи равна частоте приложенного к ней напряжения.

Резонанс в электрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля и наоборот.

При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных участках. В цепи, где r, L, C соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, C соединены параллельно, – резонанс токов.

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты собственных колебаний с частотой колебаний вынуждающей силы резонансную частоту можно найти из выражения

,

где ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах.

Работа тока

Электрический ток, конечно же, не стал бы так широко использоваться, если бы не одно обстоятельство. Работу тока или же электроэнергию легко преобразовывать в любую нужную нам энергию или работу: тепловую, механическую, магнитную…

Для практического применения тока прежде всего хочется знать, какую работу можно обратить в свою пользу. Выведем формулу для определения работы тока:

Так как все величины, входящие в формулу, можно измерить соответствующими приборами (амперметр, вольтметр, часы), формула является универсальной.

Формулу можно также записать в несколько ином виде, используя закон Ома:

Если в исходную формулу для работы тока подставить силу тока, записанную таким образом, то получим:

Если же из закона Ома выразить напряжение, то тогда:

Использование этих формул удобно, когда в цепи присутствует какое-то одно соединение: параллельное для первого случая и последовательное для второго

Добавить комментарий