Мощность трёхфазного тока: некоторые формулы для вычисления и методы измерения мощности

Расчет мощности трехфазного тока

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3·Uф·Iф· cos фи =3·Uф·I· cosфи .

При соединении в треугольник P=3·Uф·Iф· cos фи =3·U·Iф· cosфи .

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/1,73, а во второе Iф=I/1,73, получим общую формулу P= 1 ,73·U·I· cosфи .

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cosфи =0,7·

Вольтметр и амперметр показывают линейные значения, действующие значения.

Мощность двигателя по общей формуле будет:

P1=1 ,73·U·I· cosфи =1,73 · 380·20·0,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/1,73=380/1,73,

P1=3·Uф·Iф · cosфи =3·U/1,73·I· cosфи =31,7380/1,73·20·0,7;

P1=3 · 380/1,73·20·0,7=9225 Вт = 9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/ 1 ,73=20/ 1 ,73; таким образом,

P1=3·Uф·Iф · cosфи =3·U·I/ 1 ,73· cosфи ;

P1=3 · 380·20/1,73·0,7=9225 Вт = 9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sinфи=0,8 Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В·

Общая мощность ламп Pл=3·100·40 Вт =12000 Вт = 12 кВт.

Лампы находятся под фазным напряжением Uф=U/ 1 ,73=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=10·5 кВт = 50 кВт.

Активная мощность, отдаваемая генератором, PГ и получаемая потребителем P1 равны, если пренебречь потерей мощности в проводах электропередачи:

P1= PГ=Pл+Pд=12+50=62 кВт.

Полная мощность генератора S=PГ/ cosфи =62/0,8=77,5 кВА.

В этом примере все фазы одинаково нагружены, а потому в нулевом проводе в каждое мгновение ток равен нулю.

Фазный ток обмотки статора генератора равен линейному току линии (Iф=I), а его значение можно получить, воспользовавшись формулой для мощности трехфазного тока:

I=P/( 1,73 ·U · cosфи )=62000/(1,73·380·0,8)=117,8 А.

3. На рис. 4 показано, что к фазе B и нулевому проводу подключена плитка мощностью 500 Вт, а к фазе C и нулевому проводу – лампа 60 Вт. К трем фазам ABC подключены двигатель мощностью 2 кВт при cosфи =0,7 и электрическая плита мощностью 3 кВт.

Чему равны общая активная и полная мощности потребителей· Какие токи проходят в отдельных фазах при линейном напряжении сети U=380 В

Активная мощность потребителей P=500+60+2000+3000=5560 Вт=5,56 кВт.

Полная мощность двигателя S=P/ cosфи =2000/0,7=2857 ВА.

Общая полная мощность потребителей будет: Sобщ=500+60+2857+3000=6417 ВА = 6,417 кВА.

Ток электрической плитки Iп=Pп/Uф =Pп/(U· 1 ,73)=500/220=2,27 А.

Ток лампы Iл=Pл/Uл =60/220=0,27 А.

Ток электрической плиты определим по формуле мощности для трехфазного тока при cosфи =1 (активное сопротивление):

P= 1 ,73·U·I· cosфи = 1 ,73·U·I;

I=P/( 1 ,73·U)=3000/( 1 ,73 · 380)=4,56 А.

Ток двигателя IД=P/( 1,73 ·U· cosфи )=2000/( 1,73 ·380·0,7)=4,34 А.

В проводе фазы A течет ток двигателя и электрической плиты:

В фазе B течет ток двигателя, плитки и электрической плиты:

В фазе C течет ток двигателя, лампы и электрической плиты:

Везде даны действующие значения токов.

На рис. 4 показано защитное заземление З электрической установки. Нулевой провод заземляется наглухо у питающей подстанции и потребителя. Все части установок, к которым возможно прикосновение человека, присоединяются к нулевому проводу и тем самым заземляются.

При случайном заземлении одной из фаз, например C, возникает однофазное короткое замыкание и предохранитель или автомат этой фазы отключает ее от источника питания. Если человек, стоящий на земле, коснется неизолированного провода фаз A и B, то он окажется только под фазным напряжением. При незаземленной нейтрали фаза C не была бы отключена и человек оказался бы под линейным напряжением по отношениям к фазам A и B.

4. Какую подводимую к двигателю мощность покажет трехфазный ваттметр, включенный в трехфазную сеть с линейным напряжением U=380 В при линейном токе I=10 А и cosфи =0,7· К. п. д. двигателя =0,8 Чему равна мощность двигателя на валу (рис. 5)·

Ваттметр покажет подводимую к двигателю мощность P1 т. е. мощность полезную P2 плюс потери мощности в двигателе:

P1= 1,73 U·I· cosфи =1,73 · 380·10·0,7=4,6 кВт.

Полезная мощность, за вычетом потерь в обмотках и стали, а также механических в подшипниках

5. Трехфазный генератор отдает ток I=50 А при напряжении U=400 В и cosфи =0,7. Какая механическая мощность в лошадиных силах необходима для вращения генератора при к. п. д. генератора равна 0,8 (рис. 6)·

Активная электрическая мощность генератора, отдаваемая электродвигателю, PГ2=·(3·) U·I· cosфи =1,73·400·50·0,7=24220 Вт =24,22 кВт.

Механическая мощность, подводимая к генератору, PГ1 покрывает активную мощность PГ2 и потери в нем: PГ1=PГ2/Г =24,22/0,8 · 30,3 кВт.

Эта механическая мощность, выраженная в лошадиных силах, равна:

PГ1=30,3·1,36·41,2 л. с.

На рис. 6 показано, что к генератору подводится механическая мощность PГ1. Генератор преобразует ее в электрическую, которая равна

Эта мощность, активная и равна PГ2=1,73·U·I· cosфи , передается по проводам электродвигателю, в котором она преобразуется в механическую мощность. Кроме того, генератор посылает электродвигателю реактивную мощность Q, которая намагничивает двигатель, но в нем не расходуется, а возвращается в генератор.

Она равна Q=1,73·U·I·sinфи и не превращается ни в тепло, ни в механическую мощность. Полная мощность S=P· cosфи , как мы видели раньше, определяет только степень использования материалов, затраченных на изготовление машины. ]

6. Трехфазный генератор работает при напряжении U=5000 В и токе I=200 А при cosфи =0,8. Чему равен его к. п. д., если мощность, отдаваемая двигателем, вращающим генератор, равна 2000 л. с.

Мощность двигателя, поданная на вал генератора (если нет промежуточных передач),

Мощность, развиваемая трехфазным генератором,

PГ2=(3·)U·I· cosфи =1,73·5000·200·0,8=1384000 Вт =1384 кВт.

К. п. д. генератора PГ2/PГ1 =1384/1472=0,94=94%.

7. Какой ток проходит в обмотке трехфазного трансформатора при мощности 100 кВА и напряжении U=22000 В при cosфи =1

Полная мощность трансформатора S=1,73·U·I=1,73·22000·I.

Отсюда ток I=S/(1,73·U)=(100·1000)/(1,73·22000)=2,63 А. ;

8. Какой ток потребляет трехфазный асинхронный двигатель при мощности на валу 40 л. с. при напряжении 380 В, если его cosфи =0,8, а к. п. д.= 0,9

Мощность двигателя на валу, т. е. полезная, P2=40·736=29440 Вт.

Подводимая к двигателю мощность, т. е. мощность, получаемая из сети,

Ток двигателя I=P1/(1,73·U·I· cosфи )=32711/(1,73 · 380·0,8)=62 А.

9. Трехфазный асинхронный двигатель имеет на щитке следующие данные: P=15 л. с.; U=380/220 В; cosфи =0,8 соединение – звезда. Величины, обозначенные на щитке, называются номинальными.

Чему равны активная, полная и реактивная мощности двигателя? Каковы величины токов: полного, активного и реактивного (рис. 7)?

Механическая мощность двигателя (полезная) равна:

Подводимая к двигателю мощность P1 больше полезной на величину потерь в двигателе:

Полная мощность S=P1/ cosфи =13/0,8=16,25 кВА;

Q=S·sinфи=16,25·0,6=9,75 кВАр (см. треугольник мощностей).

Ток в соединительных проводах, т. е. линейный, равен: I=P1/(1,73·U· cosфи )=S/(1,73·U)=16250/(1,731,7380)=24,7 А.

Активный ток Iа=I· cosфи =24,7·0,8=19,76 А.

Реактивный (намагничивающий) ток Iр=I·sinфи=24,7·0,6=14,82 А.

10. Определить ток в обмотке трехфазного электродвигателя, если она соединена в треугольник и полезная мощность двигателя P2=5,8 л. с. при к. п. д. =90%, коэффциенте мощности cosфи =0,8 и линейном напряжении сети 380 В.

Полезная мощность двигателя P2=5,8 л. с., или 4,26 кВт. Поданная к двигателю мощность

P1=4,26/0,9=4,74 кВт. I=P1/(1,73·U· cosфи )=(4,74·1000)/(1,73 · 380·0,8)=9,02 А.

При соединении в треугольник ток в обмотке фазы двигателя будет меньше, чем ток подводящих проводов: Iф=I/1,73=9,02/1,73=5,2 А.

11. Генератор постоянного тока для электролизной установки, рассчитанный на напряжение U=6 В и ток I=3000 А, в соединении с трехфазным асинхронным двигателем образует двигатель-генератор. К. п. д. генератора Г=70%, к. п. д. двигателя Д=90%, а его коэфициент мощности cosфи =0,8. Определить мощность двигателя на валу и подводимую к нему мощность (рис. 8 и 6).

Полезная мощность генератора PГ2=UГ·IГ=61,73000=18000 Вт.

Подводимая к генератору мощность равна мощности на валу P2 приводного асинхронного двигателя, которая равна сумме PГ2 и потерь мощности в генераторе, т. е. PГ1=18000/0,7=25714 Вт.

Активная мощность двигателя, подаваемая к нему из сети переменного тока,

P1 =25714/0,9=28571 Вт = 28,67 кВт.

12. Паровая турбина с к. п. д. ·Т=30% вращает генератор с к. п. д. = 92% и cosфи = 0,9. Какую подводимую мощность (л. с. и ккал/сек) должна иметь турбина, чтобы генератор обеспечивал ток 2000 А при напряжении U=6000 В (Перед началом расчета см. рис. 6 и 9.)

Мощность генератора переменного тока, отдаваемая потребителю,

PГ2=1,73 · U·I· cosфи =1,73·6000·2000·0,9=18684 кВт.

Подводимая к генератору мощность равна мощности P2 на валу турбины:

Подводимая к турбине при помощи пара мощность

или P1=67693·1,36=92062 л. с.

Подводимую мощность к турбине в ккал/сек определим по формуле Q=0,24·P·t;

13. Определить сечение провода длиной 22 м, по которому идет ток к трехфазному двигателю мощностью 5 л. с. напряжением 220 В при соединении обмотки статора в треугольник. cosфи =0,8; ·=0,85. Допустимое падение напряжения в проводах U=5%.

Подводимая к двигателю мощность при полезной мощности P2

По соединительным проводам протекает ток I=P1/(U·1,73· cosфи ) = 4430/(220·1,73·0,8)=14,57 А.

В трехфазной линии токи складываются геометрически, поэтому падение напряжения в проводе следует брать U : 1,73 , а не U : 2, как при однофазном токе. Тогда сопротивление провода:

где U – в вольтах.

Сечение проводов в трехфазной цепи получается меньшим, чем в однофазной.

14. Определить и сравнить сечения проводов для постоянного переменного однофазного и трехфазного токов. К сети подсоединены 210 ламп по 60 Вт каждая на напряжение 220 В, находящиеся на расстоянии 200 м, от источника тока. Допустимое падение напряжения 2%.

а) При постоянном и однофазном переменном токах, т. е. когда имеются два провода, сечения будут одинаковыми, так как при осветительной нагрузке cosфи =1 и передаваемая мощность

а ток I=P/U=12600/220=57,3 А.

Допустимое падение напряжения U=220·2/100=4,4 В.

Сопротивление двух проводов r=U/I·4,4/57,3=0,0768 Ом.

Для передачи мощности необходимо общее сечение проводов 2·S1=2·91,4=182,8 мм2 при длине провода 200 м.

Читайте также:  Прибор варистор: описание принципа действия, основные параметры, характеристики и маркировка

б) При трехфазном токе лампы можно соединить в треугольник, по 70 ламп на сторону.

При cosфи =1 передаваемая по проводам мощность P=1,73·Uл·I.

Допустимое падение напряжения в одном проводе трехфазной сети не U·2 (как в однофазной сети), a U·1,73. Сопротивление одного провода в трехфазной сети будет:

Общее сечение проводов для передачи мощности 12,6 кВт в трехфазной сети при соединении в треугольник меньше, чем в однофазной: 3·S3ф=137,1 мм2.

в) При соединении в звезду необходимо линейное напряжение U=380 В, чтобы фазное напряжение на лампах было 220 В, т. е. чтобы лампы включались между нулевым проводом и каждым линейным.

Ток в проводах будет: I=P/(U:1,73)=12600/(380:1,73)=19,15 А.

Сопротивление провода r=(U:1,73)/I=(4,4:1,73)/19,15=0,1325 Ом;

Общее сечение при соединении в звезду – самое маленькое, что достигается увеличением напряжения тока для передачи данной мощности: 3·S3зв=3·25,15=75,45 мм2.

Как рассчитать трехфазную мощность? Формула мощность трехфазная

некоторые формулы для вычисления и методы измерения мощности

Переменный и постоянный ток отличаются один от другого многими параметрами, а особенно наличием фаз у первого вида. С этими отличиями связаны более сложные формулы и методы вычислений численных значений величин, характеризующих переменный ток, в том числе и мощность трёхфазного тока.

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

А так называемая нейтраль обозначается буквой N.

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто – путём умножения напряжения и силы тока. Эти параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Совершенно иная ситуация возникает при необходимости расчётов мощности изменяющегося во времени по величине и направлению течения электрического тока. Выполнение таких вычислений требует специальных знаний о природе переменного тока и его особенностях.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой:

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом: . То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы: .

Соединение звезда

Использование такой схемы при соединении фаз даёт возможность уравновесить систему и получить суммарное напряжение в точке их пересечения N равное нулю. В случае соединения по схеме «звезда» трёхфазный ток характеризуется двумя типами напряжений: фазным и линейным. Фазное напряжение измеряется между одной из фаз (А, В или С) и нулевой точкой N, а линейное показывает значение разности потенциалов между двумя фазами (А-В, В-С или А-С).

Соотношения между линейными и фазными напряжениями и токами при такой схеме соединения выглядит следующим образом: и .

А, следовательно, общая мощностная характеристика находится по формуле: .

Соединительная схема треугольник

При подключении нагрузок в трёхфазной цепи по принципу «треугольника» одинаковыми будут значения линейного и фазного напряжения, а величины силы тока (линейная и фазная) будут связаны соотношением: .

Результирующая формула для мощности 3-фазного тока при равномерной нагрузке на каждую фазу в этом соединении будет выглядеть как .

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

В зависимости от варианта комбинации системы и нагрузки определяется методика измерения мощности в электрической сети.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

В случае трёхпроводной системы обмотка напряжения измерительного прибора включается на линейное напряжение сети, а его токовая обмотка пропускает через себя линейный электропоток. Поэтому общая мощность сети будет больше показаний ваттметра в раз.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Мощность трехфазного потребителя

Мощности каждой фазы трехфазного потребителя определяются так же, как и при расчете однофазных цепей. Активная, реактивная и полная мощности фаз определяются из выражений:

Pф =UфIфcosф; Qф =UфIфsinф; Sф =UфIф

При несимметричнойнагрузке необходимо определять мощность каждой фазы в отдельности. Активная мощность трехфазного потребителя равна сумме активных мощностей фаз. С учетом принятых обозначений

при соединении звездой активная мощность потребителя

P = Pa + Pb + Pc = UaIAcosa + UbIBcosb + UcICcosc.

При соединении треугольником

P = Pab + Pbc + Pca = UabIabcosab + UbcIbccosbc + UcaIcacosca.

Реактивная мощность трехфазного потребителя равна алгебраической сумме реактивных мощностей отдельных фаз. Для соединения звездой реактивная мощность

Q = Qa + Qb + Qc = UaIAsina + UbIBsinb + UcICsinc.

Реактивная мощность при соединении треугольником

Q = Qab + Qbc + Qca = UABIabsinab + UBCIbcsinbc + UCAIcasinca.

Реактивная мощность фазы будет положительной при индуктивном характере сопротивления фазы, а отрицательной – при емкостном.

Полная мощность трехфазной цепи

При симметричнойнагрузке фазные напряжения, токи и углы сдвига фаз оказываются равными. Вследствие этого равны также активные, реактивные и полные мощности всех трех фаз потребителя электроэнергии. Мощность трехфазного потребителя всегда удобнее вычислять через линейные напряжение и ток, так как линейные величины всегда удобнее измерять.

Активная мощность симметричного трехфазного потребителя независимо от схемы его соединения может быть найдена через линейные токи и напряжения:

Аналогично можно получить и формулу для реактивной мощности симметричного трехфазного потребителя:

Q = 3Qф = 3UфIф sin ф = UЛIЛsinф.

При симметричном приемнике его полная трехфазная мощность

Методические указания по выполнению работы

1. Ознакомиться с основными теоретическими положениями и законами цепей трехфазного тока и ответить на контрольные вопросы.

2. Произвести внешний осмотр измерительных приборов: амперметров, вольтметров, установленных на панели № 2 универсального лабораторного стенда, измерительного комплекта К505, цифрового вольтметраВ7-38 и записать в отчет по лабораторной работе технические данные (тип, систему, род тока, предел измерения, класс точности, цену деления шкалы прибора), параметры исследуемой электрической цепи.

3. Исследовать трехфазную цепь при соединении приемников электрической энергии звездой с нейтральным проводом. Принципиальная схема цепи приведена на рис. 14, а.

4. Собрать четырехпроводную трехфазную цепь по монтажной схеме, рис. 15, используя в качестве нагрузки каждой фазы три постоянных и один переменный резисторы, соединенные последовательно. Подключить к исследуемой цепи нейтральный провод. Для этого соединить соединителем штекерное гнездо «0» источника питания с соответствующей генераторной клеммой измерительного комплекта, а нагрузочную клемму «0» измерительного комплекта с соответствующим нагрузке штекерным гнездом (рис. 15).

5. Питание цепи производить от трехфазного источника, расположенного на панели источников с линейным напряжением UЛ= 220 В. Измерить линейные токи с помощью измерительного комплектаК505. Измерить фазные и линейные напряжения с помощью вольтметра В7‑38, установленного на панели стенда, поочередно подключая его к соответствующим точкам цепи. Измерение тока в цепи нейтрального провода производить амперметром с пределом измерения 1 A, расположенным на панели № 3.

6. Изменяя сопротивления переменных резисторов в фазах цепи, измерить и записать в табл. 1 величины линейных токов, фазных и линейных напряжений для различных режимов работы цепи.

№40 Мощность трехфазной цепи и способы ее измерения.

Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи, равны суммам соответствующих мощностей отдельных фаз:

где IA, UA, IB, UB, IC, UC – фазные значения токов и напряжений.

В симметричном режиме мощности отдельных фаз равны, а мощность всей цепи может быть получена путем умножения фазных мощностей на число фаз:

В полученных выражениях заменим фазные величины на линейные. Для схемы звезды верны соотношения Uф/Uл/√3, Iф=Iл, тогда получим:

Для схемы треугольника верны соотношения: Uф=Uл ; Iф=Iл / √3 , тогда получим:

Следовательно, независимо от схемы соединения (звезда или треугольник) для симметричной трехфазной цепи формулы для мощностей имеют одинаковый вид:

В приведенных формулах для мощностей трехфазной цепи подразумеваются линейные значения величин U и I, но индексы при их обозначениях не ставятся.

Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:

где Uw, Iw – векторы напряжения и тока, подведенные к обмоткам прибора.

Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.

Для измерения активной мощности симметричной трехфазной цепи при-меняется схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 40.1). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз: P=3W=3UфIфcos(φ). Схема с одним ваттметром может быть использована только для ориентированной оценки мощности и неприменима для точных и коммерческих измерений.

Для измерения активной мощности в четырехпроводных трехфазных цепях (при на¬личии нулевого провода) применяется схема с тремя приборами (рис. 40.2), в которой произво¬дится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи оп¬ределяется как сумма показаний трех ваттметров:

Читайте также:  Частотный преобразователь: принцип работы, особенности и применение в асинхронных электродвигателях

Для измерения активной мощности в трехпроводных трехфазных цепях (при отсутствии нулевого провода) применяется схема с двумя приборами (рис. 40.3).

При отсутствии нулевого провода линейные (фазные) ток связаны между собой урав¬нением 1-го закона Кирхгофа: IA+IB+IC=0. Сумма показаний двух ваттметров равна:

Таким образом, сумма показаний двух ваттметров равна активной трехфазной мощности, при этом показание каждого прибора в отдельности зависит не только величины нагрузки но и от ее характера.

На рис. 40.4 показана векторная диаграмма токов и напряжений для сим¬метричной нагрузки. Из диаграммы следует, что показания отдельных ваттметров могут быть определены по формулам:

Анализ полученных выражений позволяет сделать следующие выводы. При активной нагрузке (φ = 0), показания ваттметров равны (W1 = W2).

При активно-индуктивной нагрузке(0 ≤ φ ≤ 90°) показание первого ватт-метра меньше, чем второго (W1 60° показание первого ваттметра становится отрицательным (W1

Мощность трехфазной сети

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Соответственно для активной:

Для реактивной:

Схема соединения в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметр Аналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Комментарии к статье “ Мощность трехфазной сети ”

В формуле мощности при соединении треугольником надо дописать что Iф= КОРЕНЬ из I ЛИНЕЙНОГО, а значит окончательнаяф формула принимает вид почти ТАКОЙ ЖЕ как и для мощности при соединении звездой — Р=КОРЕНЬ из ТРЁХ * Uфазное * I линейное*соs f

При чём U фазное = U линейное. То есть в обеих случаях формула мощности одна и та же.

ПОдскажите , клещами на проводниках 3 полючного автомата померили ток, получили значения. Как считать мощность через. корень квадратный? или как для однофазки P=UI

Все зависит от того, какую мощность вы хотите посчитать. Если полную, то да, S = UI. Для других мощностей нужно использовать другие формулы.

Добавить комментарий Отменить ответ

  • Автоматизация технологических процессов (139)
  • Альтернативная энергетика (32)
  • Интернет вещей (IoT) (102)
  • Микроконтроллеры (31)
  • Моделирование электромеханических систем (22)
  • Новости партнеров (1)
  • Новости электроники (172)
  • Основы электричества (29)
  • Реактивная мощность (12)
  • Робототехника (35)
  • Станки с ЧПУ (42)
  • Схемотехника (94)
  • Теория автоматического управления (16)
  • Электрика в быту (61)
  • Электрические машины и аппараты. Трансформаторы (72)
  • Электропривод (120)
  • Электроснабжение (80)
  • Электротехника (109)
  • Энергосбережение (90)
  • Магнитные пускатели – 96 260
  • Логические элементы и их схемная реализация – 77 215
  • Что такое активная, реактивная и полная мощность – 74 227
  • Механические характеристики при торможении синхронных машин – 57 269
  • Соотношение между фазными и линейными напряжениями. Номинальные напряжения – 56 085
  • Подключение амперметров к сети – 54 031
  • Что такое категории надежности электроснабжения? – 52 797
  • В чем разница между NPN и PNP транзисторами? – 52 002
  • Ввод и распределение электроэнергии в многоквартирном доме – 51 685
  • Мощность трехфазной сети – 49 625


Как высчитать ток в трехфазной цепи. Определения мощности сети по напряжению и току, расчет по формулам

§ 64. МОЩНОСТЬ ТРЕХФАЗНОГО ТОКА

Мощность, потребляемая нагрузкой от сети трехфазного тока, равна сумме мощностей, потребляемых отдельными фазами, т. е.

При равномерной нагрузке мощность, потребляемая каждой фазой,

где Uф – фазное напряжение,

cos j – коэффициент мощности нагрузки.

Мощность, потребляемая всеми тремя фазами,

При соединении приемников энергии звездой соотношение меж­ду линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой от трехфазной

При соединении приемников энергии треугольником соотношение между линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой,

Таким образом, при равномерной нагрузке мощность, потребляе­мая от трехфазной сети, независимо от схемы включения нагрузки, выражается следующей формулой:

Пример. Линейное напряжение трехфазной осветительной установки равно 220 в, а линейный ток 9,9 а. Определить, сколько ламп включено параллельно в каждую фазу нагрузки при соединении этих фаз треугольником и какова мощность всей установки, если каждая лампа потребляет ток 0,52 a .

Решение. Фазное напряжение равно линейному, т. е

Число ламп, включенных параллельно в каждой фазе,

т. е. всего включено ламп

Мощность всей установки, имея в виду, что при осветительной нагрузке cos j=1, находим по следующей формуле:

При неравномерной нагрузке мощности в фазах различный (P A P B P C) и суммарная мощность, потребляемая нагрузкой, равна:

Для измерения мощности применяют специальные измерительные приборы, называемые ваттметрами. При симметричной нагрузке мощность, потребляемая от трехфазной системы, может быть определена одним однофазным ваттметром. В четырехпроводной системе (с нулевым проводом) токовая обмотка ваттметра включается последовательно в один из линейных проводов, а обмотка напряжения – между тем же линейным и нулевым проводами. При таком включении показание ваттметра определит мощность в одной фазе Рф, а так как при равномерной нагрузке мощности всех фаз одинаковы, то суммарная мощность трехфазной системы Р = 3 Рф.

В трехпроводной системе обмотка напряжения ваттметра включена на линейное напряжение сети, а по токовой его обмотке протекает линейный ток. Поэтому мощность трехфазной системы в раз больше показания ваттметра P ω , т. е. Р= Рω.

При несимметричной нагрузке одного ваттметра для определений мощности трехфазной системы недостаточно.

В четырехпроводной системе при несимметричной нагрузке необходимо включение трех ваттметров, обмотки напряжений которых включаются между нулевым и соответствующим линейным проводом. Каждый ваттметр измеряет мощность одной фазы и суммар­ная мощность трехфазной системы равна сумме показаний трех ваттметров, т. е. Р = Р 1 + Р 2 + Р 3 .

В трехпроводной системе при несимметричной нагрузке наиболее часто используют схему двух ваттметров, которая не может быть использована в четырехпроводной системе. В схеме двух ваттметров обмотки напряжений каждого ваттметра соединены с входным зажимом обмотки тока и линейным проводом, оставшимся свободным. Полная мощность трехфазной системы равна сумме показа­ний ваттметров, т. е. Р=Р 1 +Р 2

В лабораторной практике для этой схемы измерения мощности применяют один ваттметр и специальный переключатель, который без разрыва цепи тока дает возможность включать этот ваттметр как в один, так и в другой линейный провод.

При больших углах сдвига фаз между напряжением и током по­казания одного из ваттметров могут оказаться отрицательными и для измерения мощности необходимо изменить направление тока в обмотке тока, переключив ее. В этом случае суммарная мощность равна разности показаний ваттметров, т. е. Р = Р 1 – Р 2 .

Энергия в трехфазной системе измеряется как однофазными, так и трехфазными счетчиками электрической энергии. Включение одно­фазных счетчиков в трехфазную сеть подобно включению ваттмет­ров, описанному выше.

Трехфазные счетчики составляются из двух или трех однофаз­ных, размещенных в одном корпусе и имеющих общий счетный ме­ханизм, и называются соответственно двухэлементными и трехэле­ментными. В трехпроводной системе (без нулевого провода) при­меняют двухэлементные, а в четыре проводной системе (с нулевым проводом) -трехэлементные счетчики. Схема включения счетчика электрической энергии указывается на съемной крышке, которой закрывается панель зажимов.

Онлайн калькулятор производит расчёт по нормируемому напряжению, если напряжение в Вашей местности отличается от нормальных значений, т.е. имеются значительные просадки напряжения, советуем Вам воспользоваться формулами приведёнными ниже.

Просадка напряжения. Кликабельно.

Данные формулы помогут Вам произвести более точный расчёт для Вашей сети. Обращаем Ваше внимание, что формулы для расчёта тока в сети 230 В и в сети 400 В имеют различия. Для получения более точных значений советуем использовать значения напряжения полученные путём измерения действующей величины мультиметром.

Расчёт силы тока по мощности и напряжению для однофазной сети:

P — мощность потребителя, Вт;

U — напряжение в сети, В;

Расчёт силы тока по мощности и напряжению для трёхфазной сети:

I = P / (U ×1,732 × cosφ ) ,

P — мощность потребителя, Вт;

Читайте также:  Самодельный регулятор напряжения 220в: назначение прибора, инструкция по изготовлению устройства своими руками

U — напряжение в сети, В;

cosφ — коэффициент мощности (от 0 до 1);

Коэффициент мощности cosφ определение, теория.

Коэффициент мощности cosφ – безмерная физическая величина, которая характеризует потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Полная мощность прибора состоит из активной и реактивной составляющей (активной и реактивной мощности). Активная составляющая совершает полезную работу, то есть использует электрическую энергию и полностью преобразует в другой необходимый вид энергии. Существуют отдельные приборы, которые в основном работают на данной составляющей, это к примеру обогреватели, электропечи, электроплиты, утюги, лампочки накаливания и т.п. У данных приборов cosφ будет максимально близок к максимальному значению от 0,95 до 1.

Реактивная составляющая возникает в цепях в которых содержаться реактивные элементы, например конденсаторы, катушки индуктивности, электродвигатели различных видов. Т.е. к этой группе относятся практически все приборы в основе которых есть платы и микросхемы, а также электродвигатели. Например, электродрели, отрезные, шлифовальные машинки, штроборезы, бытовая электронная техника. У данных типов приборов cosφ будет находится в диапазоне от 0,5 до 1. Реактивная составляющаяобычно считается вредной характеристикой цепи.

Активная и реактивная мощность. Кликабельно.

Анализируя вышеизложенное можно прийти к выводу, что чем меньше реактивная составляющая в нагрузке тем ближе к единице значение cosφ. Чем выше значение cosφ, тем более эффективно работает потребитель электроэнергии.

Примерные значения cosφ для некоторых типов оборудования:

  • лампы накаливания — 0,95;
  • обогреватели, электропечи, электроплиты и т.п. — 0,95;
  • электродвигатели — 0,85 ..0,87;
  • дрели, отрезные машинки и т.п. — 0,85 ..0,9;
  • электродвигатели компрессоров, холодильников, стиральных машин и т.п. — 0,7…0,85
  • компьютеры, телевизоры, СВЧ печи, кондиционеры, вентиляторы, энергосберегающие лампы — 0,5 ..0,8

Более точные значения cosφ зачастую можно найти в паспорте прибора или на бирке.

Трехфазные и однофазные сети распространены примерно одинаково в частных и многоквартирных домах. Но стоит заметить, что промышленная сеть является трехфазной по умолчанию и в большинстве случаев к улице, где расположены частные дома или к многоквартирному дому подходит как раз-таки трехфазная сеть. А уже потом ее разветвляют на три однофазные, и заводят к конечному потребителю тока.

Расчет сделан не просто так, а с целью обеспечить максимально эффективную передачу электричества от электростанции к вам, а также преследуется цель наибольшего снижения потерь электричества в транспортировочном процессе, ведь на ток оказывает сопротивление проводник, по которому этот самый ток течет.

Если вам интересно, какая сеть у вас в доме или квартире, то определить это достаточно просто. Если вы откроете электрический щиток и посмотрите, сколько проводов используется для вашей квартиры, то если вы увидите 2 или 3 провода , это однофазная сеть, 1 и 2 провод – это фаза и ноль, 3 провод, если он присутствует – это заземление. В трехфазной же сети проводов будет или 4, или 5. Три фазы А, В,С, ноль и если присутствует – заземляющий проводник.

Так же определяется и количество фаз по так называемому пакетнику, вводному автоматическому выключателю. Для однофазной сети выделяется 2 или 1 сдвоенный кабель, а в трехфазной будет 1 строенный кабель и одинарный. Но не следует забывать о напряжении, с которым нужно быть очень осторожным.

Для того чтобы произвести расчет по току, и расчет по напряжению чтобы узнать мощность несложно, как правило, в трехфазных сетях нуждаются большие энергопотребители. С помощью формулы, приведенной в статье, произвести расчет мощности, используя значения тока и напряжения, вы сможете с легкостью.

Итак, перейдем к существу, нам нужно узнать мощность электричества по току и напряжению. Прежде всего нужно знать, сколько потреблять энергии вы будете. Это легко узнать, сопоставив все энергопотребители в вашем доме. Давайте выберем самую распространенную технику, без которой не обойтись современному человеку. Кстати, узнать сколько потребляет тот или иной прибор, можно в паспортных данных вашего электроприбора, или на бирке, которая может быть на корпусе. Начнем с самого высокого потребления напряжения:

По формуле нам нужно все добавить и поделить на 1000 , для перевода из ватт в киловатты.

Суммарно у нас получилось 10975 Ватт, переведем в киловатты, поделив на 1000.

Итого у нас потребление 10.9 кВт.

Для обычного обывателя вполне достаточно и одной фазы. Особенно если вы не собираетесь включать все одновременно, что, конечно же, маловероятно.

Но нужно помнить что потребление тока может быть значительно выше, особенно если вы живете в частном доме и/или у вас есть гараж, тогда потребление одного прибора может составлять 4-5 кВт. Тогда вам будет предпочтительнее трехфазная сеть, как более мощная и позволяющая подключать значительно более мощных потребителей тока.

Трехфазная сеть

Давайте более подробно рассмотрим именно трехфазную сеть, как более предпочтительную для нас. Для начала приведем сравнительную характеристику однофазной и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда используется трехфазная сеть есть вероятность что нагрузка распределиться неравномерно на каждую фазу. Если, к примеру, от первой фазы будет запитан электрический котел и мощный нагреватель, а от второй – телевизор и холодильник, то будет иметь место такое явления, как «перекос фаз» – несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания подобной ситуации следует тщательнее планировать распределение нагрузки еще на начальном этапе проектирования сети.

Также трехфазной сети потребуется большее число проводов , кабелей и автоматических выключателей, пропускающих ток, так как мощность будет значительно выше, соответственно монтаж такой сети будет дороже.

Однофазная сеть по возможной потенциальной мощности уступает трехфазной. Так что если вы предполагаете использовать много мощных потребителей тока, то второй вариант будет соответственно лучше. Для примера, если в дом заходит двужильный (трехжильный если он с заземлением), с линии электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превышать 14кВт, как в примере, наведенном выше.

Но если же вы будете использовать то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным , то уже тогда максимальная суммарная мощность будет равняться уже 42 кВт.

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в котором установлены тридцать электродвигателей . В цех заходит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех двигателей составляет Ру1 – 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру – установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс – коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое большое возможное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, то есть освещения, Кс2-0,9, и для силовой нагрузки, то есть электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos(φ) = 0,75. Необходимо найти расчетный ток линии .

Расчет

Подсчитаем расчетную силовую нагрузку P1 = 0,35*48 = 16,8 кВт

и расчетную осветительную нагрузку Р2 = 0,9 *2 = 1.8 кВт.

Расчетный ток считаем с помощью формулы:

Р – расчетная мощность потребителя (электродвигатели и освещение), кВт;

Uн – напряжение номинальное на клеммах приемника, которое равняется междуфазному (линейному, когда подключается фаза и фаза, тоесть 380 В) то есть напряжению в сети, от которой он запитан, В;

cos (φ) – коэффициент мощности приемника.

Таким образом, мы произвели расчет мощности по току , который позволит вам разобраться с трехфазными сетями. Но перейдя непосредственно к монтажу системы не забывайте технику безопасности, ведь ток и напряжение опасное для вашей жизни явление.

Измерение мощности в трехфазных цепях

Мощность симметричной трехфазной цепи находят как утроенную мощность одной фазы. Измерение мощности одной фазы осуществляется ваттметром, включенным по схемам рис. 11.1 при соединении нагрузки звездой (рис. 11.11, а) и треугольником (рис. 11.11, б).

Если нулевая точка звезды или ветви треугольника недоступны для непосредственного подключения приборов, то образуют искусственную нулевую точку, как показано на рис. 11.12. При этом необходимо, чтобы каждое из сопротивлений Rv было равно сопротивлению вольтметровой обмотки ваттметра.

Для измерения мощности несимметричной трехфазной цепи используется метод двух ваттметров.

Для доказательства этого метода выразим мощность трехпроводной трехфазной цепи через линейные токи и напряжения.

При соединении звездой без нулевого провода сумма линейных токов равна нулю: iA+iB+ic = 0, или /с=-iA-iB. Подставляя выражение тока ic в формулу мощности трехфазной цепи:

При соединении треугольником сумма фазных (линейных) напряжений равна нулю: илввс + исл=0 или и лв =

и сл ? Подставляя выражение напряжения илв в формулу мощности:

Полученным результатам соответствует схема включения двух ваттметров, показанная на рис. 11.13. Мощность несимметричной трехфазной цепи находят как сумму показаний этих ваттметров. В некоторых случаях (это зависит от характера нагрузки) стрелка одного из ваттметров будет отклоняться влево, за нуль шкалы. Тогда необходимо изменить направление тока в одной из обмоток этого ваттметра и отсчитать его показания. При этом мощность цепи находят как разность показаний ваттметров.

Мощность четырехпроводной трехфазной цепи измеряют тремя ваттметрами (рис. 11.14) и подсчитывают как сумму их показаний.

Имеются также специальные ваттметры, в которых два (для трехпроводиой цепи) или три (для четырехпроводной цепи) измерительных механизма действуют на одну ось. Эти механизмы расположены в одном корпусе. По шкале ваттметра отсчитывают непосредственно мощность трехфазной цени.

Карточка 11.11 (287)

Измерение мощности в цепях трехфазного тока

Сколько ваттметров необ- ходимо для измерения мощ- ности трехфазной цепи при симметричной нагрузке?

Сколько ваттметров при 11 ее и м метрич ной н а груз ке нужно для измерения мощности трехфазной цени:

  • а) с нулевым проводом;
  • б) без нулевого провода?
  • а) Два;
  • б) три
  • а) Три;
  • б) два

На какие токи и напряжения включают ваттметр при измерении мощности:

  • а) с одним ваттметром;
  • б) с двумя ваттметрами?
  • а) Фазные;
  • б) фазные
  • а) Линейные;
  • б) линейные
  • а) Фазные;
  • б) линейные

На какие а) токи и б) напря- жен ия включают ваттметры при измерении мощности в трехфазной цепи с нулевым проводом?

Добавить комментарий