Атмосферное электричество: особенность возникновения, виды проявлений, защита от опасности

Атмосферное электричество: опасности, меры защиты

Разряды атмосферного электричества (молнии) могут явиться причиной взрывов, пожаров, поражения людей. Разрушительное действие удара молнии очень велико, так как сила тока молнии достигает до 200 кА, напряжение до 150 MB.
Помимо прямого удара, опасность представляет вторичное проявление молнии в виде электростатической и электромагнитной индукций, а также заноса в производственное помещение высоких потенциалов по проводам через наземные или подземные металлические коммуникации. При этом в местах разрыва электроцепи может возникнуть искрение, достаточное для воспламенения горючей среды.
Способ защиты от молний выбирают в зависимости от назначения здания или сооружения, интенсивности грозовой деятельности в данном районе, ожидаемого количества поражений молний в год.
Одним из основных мероприятий защиты от воздействия молнии является устройство молниеотводов. Молниеотвод создает определенную зону защиты, в пределах которой обеспечивается безопасность зданий и сооружений от прямых ударов молнии.

По конструкции молниеотводы разделяют на сгерж-нсные, тросовые и сетчатые. Молниеотвод состоит из несущей части (опоры), молниеприемника, токоотвода и заземлителя.
Каждый молниеотвод имеет определенную зону действия, т. е. часть пространства, внутри которого с достаточной степенью надежности обеспечивается защита здания или сооружения от прямых ударов молнии. Внутри этой зоны выделяют зону А со степенью надежности’99,5 % и выше и зону Б со степенью надежности 95 % и выше.
Для зоны Б высоту одиночного стержневого молниеотвода при известных величинах и гх определяют:h=(rx + 1,63 hх)/1,5.
Защита от электростатической индукции осуществляется присоединением всех металлических корпусов оборудования и конструкций к специальному заземлителю, обеспечивающему сопротивление растекаемому току не менее 10 Ом.
Для защиты от электромагнитной индукции трубопроводы и другие протяженные металлические предметы в местах их взаимного сближения на 10 см и менее соединяют привариваемыми металлическими перемычками через каждые 20 м длины, чтобы не допустить образования незамкнутых контуров.
Для защиты от заноса высоких потенциалов перед вводом в сооружение подземные металлические коммуникации присоединяют к заземлителям защиты от электростатической индукции или защитному заземлению электрооборудования, а внешние наземные металлические конструкции и коммуникации — к заземлителю защиты от электростатической индукции. Кроме того, на ближайших двух опорах от здания наземные коммуникации присоединяют к заземлителям с импульсным сопротивлением не более 10 Ом.

Изоляция: виды, нормирование, периодичность контроля, меры безопасности

Надлежащее состояние изоляции электроустановок является одним из решающих факторов, определяющих электробезопасность. В свою очередь, состояние изоляции электроустановок зависит от уровня технической эксплуатации электрохозяйства.

В процессе эксплуатации электроустановок изоляция изменяет свои свойства вследствие нагревания рабочими и пусковыми токами, токами короткого замыкания и теплом от посторонних источников, в результате динамических усилий, коммутационных и атмосферных перенапряжений, механических воздействий (при прокладке, вибрации, изгибах и др.), действия окружающей среды (с повышенной или пониженной влажностью, с содержанием химически активной среды и т.д.) и просто стареет.

Низкий уровень сопротивления или повреждение изоляции является одной из причин электротравматизма, пожаров и аварий. Поэтому в каждом случае применения электрической аппаратуры, кабелей, проводов и т.п. нужно строго следить за тем, чтобы используемое электрооборудование по своим электротехническим данным соответствовало условиям эксплуатации.

Требования изоляции находят свое выражение в нормировании параметров, характеризующих её свойства при выпуске с завода и в процессе эксплуатации, а также в регламентировании условий испытания. Эти требования определены в правилах устройства электроустановок (ПУЭ), правилах технической эксплуатации электроустановок потребителей (ПТЭЭП) и РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования».

В практике эксплуатации электроустановок имеют место:

– испытание изоляции токоведущих частей повышенным напряжением промышленной частоты;

– постоянный непрерывный контроль состояния изоляции;

– периодический контроль (измерение) изоляции.

Испытание изоляции повышенным напряжением получило массовое применение пока лишь в установках напряжением выше 1000 В при проверке всех видов изоляции высоковольтной аппаратуры, оборудования подстанций и кабельных линий.

Постоянный контроль применяется при эксплуатации электроустановок, находящихся в особоопасных условиях труда (предприятия горнорудной, химической и др. отраслей промышленности), а также при эксплуатации передвижных электроустановок.

Под периодическим контролем изоляции понимают измерение её активного сопротивления в установленные правилами сроки, а также в случае обнаружения дефектов. Сопротивление изоляции обычно измеряют специальными приборами – мегаомметрами.

Для измерения сопротивления изоляции сетей обмоток электродвигателей, трансформаторов и др. электрических установок широко применяются мегаомметры типа М 1001 М, с помощью которых определяется величина сопротивления изоляции как между двумя различными токоведущими проводниками, так и между проводником и землей.

Источником тока в мегаомметрах типа М 11001 М служит генератор постоянного тока, который приводится во вращение при помощи рукоятки и может давать напряжение до 1000 В. Последовательно с генератором включен магнитоэлектрический прибор логометрической системы для измерения напряжения. Прибор снабжен шкалой, позволяющей по отклонению стрелки определить сопротивление изоляции.

Испытанию повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами.

Перед проведением испытаний изоляции электрооборудования (за исключением вращающихся машин, находящихся в эксплуатации) наружная поверхность изоляции должна быть очищена от пыли и грязи, кроме тех случаев, когда испытания проводятся методом, не требующим отключения электрооборудования.

К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.

К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).

1) основная изоляция:Изоляция, применяемая для частей оборудования, находящихся поднапряжением, с целью обеспечения защиты от поражения электрическим током;

2) дополнительная изоляция:Независимая изоляция, применяемая в дополнение к основнойизоляции для того, чтобы гарантировать защиту от поражения электрическим током в случае отказаосновной изоляции;

3) двойная изоляция:Изоляция, включающая основную и дополнительную изоляцию;

4) усиленная изоляция:Отдельная система изоляции, применяемая для частей под напряжением, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойнойизоляции в условиях, определенных в настоящем стандарте.

НОРМИРОВАНИЕ: не менее 0,5Мом

Периодичность контроля:Измерение сопротивления изоляции электропроводки необходимо проводить при вводе электроустановки в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Измерения сопротивления изоляции в особоопасных помещениях и наружных установках требуется проводить не реже 1 раза в год.

Дата добавления: 2018-08-06 ; просмотров: 584 ;

Атмосферное электричество: особенность возникновения, виды проявлений, защита от опасности

Не только во время грозы в атмосфере существует электричество. Оно, вообще, присуще атмосфере и характеризует ее состояние. В начале XIX века экспериментально было обнаружено, что идеально изолированный от Земли заряженный проводник постепенно теряет свой заряд. Был установлен и закон потери заряда во времени. Позже это явление было объяснено. Оказывается, в окружающем нас воздухе есть зарядоносители — заряженные ионы. Они-то и являются причиной того, что идеально изолированный от Земли заряженный проводник теряет свой заряд.

Зарядоносителями – ионами могут быть заряженные остатки атомов и молекул, которые делятся на легкие, средние и тяжелые ионы. Это микрочастицы водяного тумана, дождевые капли, мелкодисперсная пыль, микроорганизмы. В окружающей человека среде зарядоносители непрерывно передвигаются по всем направлениям. Наблюдение, проведенные у земной поверхности с помощью вольтметра с большим внутренним сопротивлением, показали, что градиент потенциала находится в пределах 120-150 В/м.

В результате экспериментальных наблюдений была установлена плотность электрических зарядов на поверхности Земли, равная 7•105 элементарных зарядов. Зная площадь поверхности Земли, несложно определить общий заряд Земли — он равен 5•107 Кл. Количество электричества на поверхности Земли непрерывно меняется. Электрические заряды перемещаются с поверхности Земли в верхние слои атмосферы и наоборот — из верхних слоев атмосферы стремятся к ее поверхности. Если перемещение электрических зарядов оценить значением тока, то этот ток составит в среднем 1500 А. Электрический ток, равный 1500 А, постоянно циркулирует между верхними слоями атмосферы и поверхностью нашей планеты. Поверхность Земли обладает отрицательным зарядом.

Токи проводимости, создаваемые ионами разной природы и разного знака, в целом движутся к Земле, неся положительный заряд. То же можно сказать и о макрозаряженных частицах, выпадающих в виде осадков — дождя, снега.

Поверхность Земли неоднородна. Резко выраженную ее неоднородность создает человек, строя различные здания, заводские трубы и т.д. Во время грозы, а иногда и задолго до ее развития, когда напряженность электрического поля в атмосфере становится особенно большой (при бурях, снежных метелях, сильных ветрах), и происходят большие перемещения воздушных масс, можно видеть светящиеся заряды, возникающие на остриях, острых углах и иных предметах, возвышающихся над Землей. Эти разряды известны под названием огней Эльма. Чаще всего светящиеся разряды возникают в горах на острых выступах скал, вершинах деревьев, верхушках опор линий электропередачи. В низменных местах они замечены на молниеотводах, выступах зданий, мачтах кораблей, антеннах. В исключительных случаях светящиеся разряды наблюдаются и на животных, и на вытянутой руке человека. Их появление сопровождается потрескиванием продолжительностью от нескольких секунд до часов.

Подобные явления представляют собой различные формы коронного разряда, который образуется около светящегося предмета в виде своеобразной короны. Возникновение их обусловлено резким увеличением напряженности электрического поля, в 1000 раз превышающим средние значения 120-1250 В/м. Высокая напряженность поля уже при нормальном давлении вызывает ионизацию, сопровождающуюся появлением электронов. Электроны появляются вследствие вторичной ионизации, вызываемой ионами, находящимися в воздухе вблизи острия и разгоняемыми электрическим полем.

Итак, острия являются основными точками отрицательного заряда поверхности Земли. То, что разряды молний несут на Землю обильный отрицательный заряд, тоже можно объяснить. В ионизированном “стволе” молнии более легкие зарядоносители (электроны), естественно, находятся впереди.

Из атмосферного электричества наиболее опасным для человека являются разряды молний. Для защиты людей и строений от попадания молнии создают молниеотводы. Их устанавливают на самой верхней точке строения. Это делать необязательно в том случае, если вблизи находится другое строение, которое значительно выше и имеет свой молниеотвод.

Поскольку разряды молнии стремятся достигнуть Земли по пути наименьшего сопротивления, то попадают в самую верхнюю точку, имеющую контакт с Землей. Поэтому заземленный молниеотвод, находящийся выше защищаемых объектов, принимает весь удар на себя, предотвращая, таким образом строения и людей от поражения молнией.

Комплекс средств молниезащиты зданий или сооружений включает в себя устройства защиты от прямых ударов молнии и устройства защиты от вторичных воздействий молнии. В частных случаях молниезащита может содержать только внешние или только внутренние устройства. В общем случае часть токов молнии протекает по элементам внутренней молниезащиты.

Внешняя молниезащита может быть изолирована от сооружения (отдельно стоящие молниеотводы – стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.

Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта. Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле.

Атмосферное электричество. Виды и особенности. Явления

В атмосфере Земли возникают различные акустические, оптические и электрические явления. Атмосферное электричество это совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. Однозначной картины того, чем является атмосферное электричество, до настоящего времени нет. Существующие модели объясняют часть явлений, обладая своими плюсами и минусами каждая.

Изучаются существующее в атмосфере электрическое поле, ионизация атмосферы и ее электрическая проводимость, атмосферные электрические токи, объемные заряды, заряды облаков и осадков, грозовые разряды и другое. К атмосферному электричеству относятся тропосферные и стратосферные процессы. Тропосфера (нижний слой атмосферы) простирается до высоты 8-18 км, в зависимости от географической широты местности; выше, до высот порядка 50 км, простирается стратосфера, еще выше лежит ионосфера.

История изучения

Атмосферное электричество было доказано одним из отцов-основателей Соединенных Штатов Бенджамином Франклином, соавтором Декларации независимости и Конституции страны, чей портрет украшает 100-долларовую купюру. Будучи ученым-самоучкой, Франклин интересовался множеством физических проблем, в т.ч. и исследованиями электричества. Франклин изобрел плоский конденсатор и молниеотвод, что внесло вклад в изучение и объяснение процессов в атмосфере.

К заслугам Франклина следует отнести то, что он в 1752 году показал, что атмосферное электричество, получаемое посредством запуска воздушных змеев, способно заряжать лейденскую банку (цилиндрический конденсатор с металлическими обкладками и стеклянным диэлектриком) не хуже «земного» электричества, добываемого трением. Им же была установлена электрическая природа молнии. Для доказательства того что в воздухе присутствует атмосферное электричество Франклин использовал бумажный змей с проволокой на нем. Эти заслуги были высоко оценены его российским коллегой М.В. Ломоносовым.

Читайте также:  ТБ при работе с электрооборудованием: требования к технике безопасности и необходимость ее соблюдения

В России 18 века заметный вклад в изучение атмосферных электрических явлений был внесен академиками М.В. Ломоносовым и Г.В. Рихманом. В 1745 году Рихман разработал «Электрический указатель», представлявший собой электроскоп с разделенной на градусы шкалой. Этим указателем Ломоносов с Рихманом воспользовались при создании «громовой машины» — установки для изучения интенсивности атмосферных электрических разрядов. «Громовая машина», в отличие от «электрического змея» Франклина, непрерывно фиксировала изменения атмосферного электричества, вне зависимости от погоды, и позволила ученым установить, что в атмосфере электричество разлито и в отсутствие грозы. Также им удалось доказать, что молния является электрическим разрядом в атмосфере. Особо зрелищной явилась пальба при стечении народа из батареи пушек в небо, с целью показать, что «гром не показывает электрической силы», поскольку при этом «электрический указатель ничего не показывал».

В 1753 году Рихман, во время очередного эксперимента, был убит шаровой молнией, вышедшей из «электрического указателя» во время грозы. В том же году Ломоносов выступил с докладом о разработанной им материалистической теории «Атмосферное электричество», соответствующей в принципиальных основах современным представлениям.

Ломоносов полагал, что причиной атмосферного электричества является трение пылинок воздуха о капельки воды, все это на фоне восходящих и нисходящих потоков воздуха. Северные сияния также имеют, по мнению Ломоносова, электрическую природу, он проводил опыты по воспроизведению северных сияний на моделях. Также Ломоносов рекомендовал повсеместную установку громоотводов.

Интересен опыт, произведенный в 1868 году американским дантистом Малоном Лумисом. Лумис в присутствии членов Конгресса США устанавливал беспроводную связь между двумя пунктами посредством поднятых над землей на высоту 190 м двух электропроводов, служащими передающей и приемной антенной. На расстояние 30 км при замыкании передающей антенны ключом на землю передавался сигнал, регистрируемый включенным в цепь приемной антенны гальванометром. Поскольку в цепь антенны никакие источники электропитания не подключались, придется признать, что без атмосферного электричества и здесь не обошлось.

В дальнейшем Лумис вместо воздушных змеев соорудил высокие металлизированные деревянные мачты. Особого интереса к его опытам современники не проявляли – в это время А.С. Попов еще учился в школе, а Г. Маркони еще не успел родиться. Будущее радиосвязи было связано с мощными источниками электропитания на передающей стороне с преобразованием их энергии в энергию электромагнитных волн.

По завершению 19 века наблюдается уменьшение интереса к изучению гроз и молний. Больше внимания ученые уделяляли изучению электрического поля при хорошей погоде.

Исходя из того, что человечество на Земле живет между обкладками заряженного конденсатора, неоднократно возникала мысль воспользоваться этой бесплатной энергией. Одним из первых такие мысли высказывал ученый сербского происхождения Никола Тесла, и даже проводил практические опыты в этом направлении – построил 47-метровую вышку для получения «атмосферного электричества».

Модели

Самой распространенной моделью, предоставляющей хорошую аналогию атмосферным процессам, и теоретические возможности их рассмотрения, является конденсаторная модель.

В этой модели Земля с окружающей атмосферой представлена огромным сферическим конденсатором, и, как и любой конденсатор, способна сохранять электрическую энергию. Обкладками этого конденсатора служат поверхность земли и ионосфера. Диэлектриком конденсатора служит воздух, обладающий низкой электропроводимостью. Обкладки этого «конденсатора» разнополярно заряжены – отрицательно поверхность Земли и положительно ионосфера, и между ними формируется электрическое поле.

Однако, в отличие от идеального конденсатора, где поле между обкладками однородное, поле «земного» конденсатора неоднородно, его напряженность максимальна у поверхности земли и уменьшается с высотой. Неравномерность атмосферного электрического поля объясняется электрическими явлениями в облаках, создающими объемные заряды в слоях атмосферы и обусловливающими большую напряженность электрического поля у поверхности Земли. Если у земной поверхности напряженность составляет 130 В/м, то уже на километровой высоте она падает до 40 В/м, а на высоте 12 км составляет всего 2,5 В/м. Атмосферное электричество и его конденсаторная модель называется теорией Вильсона, по имени шотландского физика. По теории Ч. Вильсона, обкладки земного конденсатора заряжаются грозовыми облаками, обладающими зарядом в 10-20 Кл, иногда доходящими до 300 Кл.

Имеется также гипотеза советского ученого Я.И. Френкеля, в которой электрическое поле формируется путем взаимодействия и поляризации поверхности Земли и облаков, ионосфере при этом особая роль в создании электрического поля не отводит

Следствия конденсаторной модели

Из конденсаторной модели вытекает наличие токов утечки, в обычном конденсаторе снижающих его эффективность как хранителя электрического заряда, и в итоге приводящих к разряду конденсатора. Аналогом токов утечки конденсатора в «земном» конденсаторе являются конвективные токи грозовых и ураганных областей, достигающие десятков тысяч ампер. Но, в отличие от физического конденсатора, разность потенциалов между ионосферой и земной поверхностью не изменяется, т.е. земной конденсатор не разряжается, а напряженность электрического поля в атмосфере не спадает. Подобное возможно только, если дополнительный генератор будет постоянно подпитывать зарядами обкладки конденсатора. Источником энергии, подпитывающим конденсатор, является магнитное поле земли. Вращение Земли в потоке исходящего от Солнца излучения приводит к выработке электрического напряжения, создающего разность потенциалов между ионосферой и земной поверхностью.

Из конденсаторной модели вытекают следующие характеристики системы: общий заряд Земли 6·10 5 Кл, разность потенциалов между обкладками 300 кВ, полное сопротивление атмосферы 230 Ом. Земной конденсатор постоянно разряжается суммарными токами порядка сотен ампер, и в отсутствие источников постоянного подзаряда конденсатора он бы разрядился полностью примерно за 10 минут. Природа подзаряда конденсатора окончательно не выяснена, но известно, что в областях с грозовыми облаками текут токи заряда, а в свободных от облаков областях текут токи разряда.

Атмосферные явления

Гроза и молнии

Гроза сопровождается искровыми разрядами – молниями, сопровождающимися световыми вспышками и громом. С точки зрения конденсаторной модели все это – паразитные явления. Для наземных объектов (и летящих самолетов) молнии представляют огромную опасность, вследствие своего электрического, теплового и ударного воздействия.

Атмосферное электричество как молнии бывают не только на земле, но и на других планетах Солнечной системы. Сила тока линейной земной молнии доходит до полумиллиона ампер при напряжении до миллиарда вольт и типичном значении в десятки миллионов вольт. Длительность молний достигает нескольких секунд, а длина доходит до сотен километров, при том, что молний короче нескольких сотен метров тоже не бывает.

В верхних слоях атмосферы за последние десятилетия открыты и совершенно особые виды молний – эльфы, спрайты и джеты.

Зарницы

Зарницы – вспышки света на горизонте при удаленной грозе. Вследствие удаленности раскаты грома не слышны, но видны вспышки молний. Иногда зарницы видны при совершенно ясном небе. Появляются они обычно в жаркое время года.

Огни Святого Эльма

Помимо молний (искрового разряда) в атмосфере наблюдается и коронный разряд, называемый огнями Святого Эльма. Коронный разряд возникает в газе в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, провода). К появлению огней Святого Эльма ведет повышение напряженности электрического поля в окружающей среде, во время грозы или ее приближении, метели, шторма и пр.

В зонах вблизи острия нейтральные частицы газа ионизируются и возбуждаются в результате соударения с электронами, в результате вокруг электродов возникает «корона» – светящийся ореол. В атмосфере коронный разряд выглядит как наблюдающиеся в темноте светящиеся кисти на острых концах высоких предметов (башен, корабельных мачт).

Шаровые молнии

Шаровая молния – это газовый разряд сферической формы, выглядит как плавающее в воздухе светящееся образование, перемещающееся по непредсказуемой траектории. Очевидцы свидетельствуют, что шаровая молния появляется в грозовую погоду, иногда наряду с обычными молниями. При этом она выходит из проводника или даже предмета (столба, дерева). Попытки сфотографировать шаровую молнию или произвести видеосъемку обычно оказывались неудачными ввиду низкого качества отснятого материала.

Шаровая молния – настолько редкое и уникальное природное явление, что до сих пор не существует признанного всеми теоретического обоснования этого феномена, а до 2012 года даже не существовало подтверждения их реальности. Есть и теории, считающие наблюдения шаровой молнии следствием расстройств психики. Получить устойчивую шаровую молнию в лабораторных условиях также еще не удалось.

Статическое электричество и защита от него

Если электрические заряды свободно перемещаются по проводнику, это называется электрическим током. Если они останавливаются без движения, начинают накапливаться на чем-либо, следует говорить о статическом электричестве. В соответствии с ГОСТом, статикой называют совокупность возникновения, сохранения и свободного накопления электрического заряда на внешней поверхности диэлектризованных материалов или на изоляторах.

Возникновение статического электричества

Когда физическое тело находится в обычном нейтральном состоянии, баланс отрицательно и положительно заряженных частиц в нем соблюдается. Если же он нарушается, в теле образуется электрозаряд с тем или иным знаком, возникает поляризация – заряды приходят в движение.

Дополнительная информация. Каждый физический объект способен производить заряды либо положительного, либо отрицательного направления, чем и характеризуются по трибоэлектрической шкале.

Например:

  • позитивные: воздух, шкура, асбест, стекло, кожа, слюда, шерсть, мех, свинец;
  • негативные: эбонит, тефлон, селен, полиэтилен, полиэстер, латунь, медь, никель, латекс, янтарь;
  • нейтральные: бумага, хлопок, древесина, сталь.

Статическая электризация предметов может происходить вследствие различных причин. Главными из них являются следующие:

  • непосредственный контакт между телами с последующим разделением: трение (между диэлектриками или диэлектриком и металлом), наматывание, разматывание, перемещение слоев материала друг относительно друга и другие подобные манипуляции;
  • мгновенное изменение температуры окружения: резкое охлаждение, помещение в духовку и др.;
  • радиационное воздействие, облучение ультрафиолетом или рентгеновскими лучами, наведение сильных электрических полей;
  • процессы резания – на станках для раскроя или разрезания бумажных листов;
  • специальное направленное наведение статистическим разрядом.

На молекулярном уровне возникновение статического электричества происходит вследствие сложных процессов, когда электроны и ионы со сталкивающихся неоднородных поверхностей с разными атомарными связями поверхностного притягивания начинают перераспределяться. Чем быстрее материалы или жидкости перемещаются друг относительно друга, ниже их удельное сопротивление, больше площади, вступающие в контакт и усилия взаимодействия, тем выше будут степень электризации и электрический потенциал.

Источниками возникновения электростатики, как в бытовых, так и в промышленных условиях, являются компьютерная и офисная техника, телевизоры и прочие агрегаты и приборы, питающиеся от электрического тока. Например, у самого простого компьютера имеется пара вентиляторов для охлаждения системного блока. При разгоне воздуха частички пыли, содержащиеся в нем, электризуются и, сохраняя заряд, оседают на окружающих предметах, коже и волосах людей и даже проникают в легкие.

Также статика в большом количестве накапливается на экранах мониторов. В домах и производственных помещениях электростатические заряды образуются на полах, покрытых линолеумом или ПВХ-плиткой, на людях (в волосах и на синтетической одежде).

В природе очень мощным бывает статическое электричество, возникающее при перемещении облачных масс: между ними возникают огромные потенциалы электроэнергии, что проявляется в грозовых разрядах.

В промышленности часто встречается образование статических зарядов в случаях:

  • трения лент транспортеров о валы, ремней проводов – о шкивы (особенно в случаях буксовки и застревания);
  • при прохождении горючих жидкостей по трубопроводам;
  • заполнении цистерн бензином и прочими жидкими нефтяными фракциями;
  • попадания и продвижения пылинок в воздухопроводах с большой скоростью;
  • во время размалывания, перемешивания и отсеивания сухих веществ;
  • во время взаимного сжимания диэлектрических материалов разного рода и консистенции;
  • обработке пластических масс механическим способом;
  • прохождении сжиженного газа (особенно содержащего суспензии или пыль) по трубопроводам;
  • перемещения тележек с прорезиненными шинами по изолирующему половому покрытию.

Опасность статического электричества

Наибольшую опасность накопившееся статическое электричество представляет на промышленном производстве. Может произойти неожиданное воспламенение горючего материала искрами от прикосновения оператора с оборудованием на заземлении и последующим взрывом. Энергия электростатических разрядом иногда составляет около 1,4 джоулей – это более чем достаточно для приведения смесей пыли, пара, газа и воздуха, присутствующих в любых горючих веществах, в состояние горения. По ГОСТу наибольшая энергия накопленных зарядов на поверхности промышленного объекта не должна быть более 40 процентов от наименьшей энергии для загорания материала.

При протекании некоторых технологических операций, например:

  • пересыпании и перевозке песка в грузовиках;
  • прокачке топлива по трубопроводам;
  • переливании спирта, бензола, эфира в незаземленные цистерны с большой скоростью;
  • при транспортерных работах и др. генерируются электрические потенциалы от 3 до 80 киловольт.

Обратите внимание! Для того чтобы взорвались бензиновые пары, достаточно 300 вольт, горючие газы – 3 киловольта, а горючие пыли – около 5 киловольт.

Статика также негативно отражается на работе всех точных и сверхточных приборов, радиосвязном оборудовании, создает большие проблемы в функционировании средств автоматики и телевизионной механики. Многие детали сложных электронных приборов просто не рассчитаны на такие высокие значения напряжения, образуемые статическим разрядом. Он выводит эти детали из строя, в результате чего у приборов теряется точность работы.

На людях также могут скапливаться заряженные частицы, если они носят обувь с подошвами, не проводящими ток, шерстяную, шелковую или синтетическую одежду. Электризация происходит при движении (если половое покрытие не проводит электроток) и взаимодействии с диэлектрическими предметами.

Воздействие статики на человеческое тело осуществляется в виде продолжительно протекающего электротока слабого напряжения или же моментного разряда, что вызывает легкие и не всегда приятные покалывания на коже (иногда они оцениваются как умеренные или даже сильные уколы). В целом, такое воздействие потенциалом не выше 7 джоулей считается неопасным для здоровья, однако, даже слабый разряд тока может привести к рефлекторному сокращению мышц, что чревато различными производственными травмами (попадание в рабочие зоны механизмов, захват частей тела или одежды неогороженными двигающимися элементами машин, падение с высоты).

Читайте также:  Получение и передача электроэнергии: источники генерации энергии, передача ее на большие расстояния

Если рассматривать действие статического электричества на человеческий организм на клеточном уровне, то в результате срабатывания нейрорефлекторного механизма происходит раздражение кожных нейронов и мельчайших капилляров. Это приводит к изменениям в ионном составе тканей нашего тела, что проявляется в повышенной утомляемости в течение дня, постоянному раздраженному психическому состоянию, нарушению ритма сна и другим проблемам в функционировании центральной нервной системы. Общая работоспособность снижается. Провоцируемые постоянным воздействием статического электричества спазмы кровеносных сосудов могут стать причиной брадикардии – уменьшения частоты сокращений сердечной мышцы и повышенного кровяного давления.

Способы защиты от статики на производстве

Против вредного и опасного проявления накопленного статического электротока в производственных условиях разрабатывается и применяется комплекс защитных мероприятий. В их основе лежат следующие методы:

  • повышение проводящих свойств материалов и окружающей рабочей среды, что приводит к рассеиванию в пространстве периодически появляющихся электрозарядов статики;
  • снижение скоростей обработки и перемещения материалов, что значительно уменьшает возможности генерирования статических электрозарядов;
  • полномасштабное применение грамотно устроенного заземления, что помогает исключить накопление опасных потенциалов;
  • повышение устойчивости самих машин и механизмов к действию статистических разрядов;
  • недопущение проникновения электрического тока в рабочую зону.

Все способы, применяемые для предотвращения статических электрических разрядов, разделяют на конструкционные, технологические, химические, физические и механические. Три последних направлены главным образом на снижение активности генерирования электрозарядов и быстрейшему их уходу в почву. В то же время первые из перечисленных методов с заземлением не связаны.

В качестве высоконадежного средства защиты от статического электричества выступает так называемая клетка Фарадея. Она выполняется в виде мелкоячеистой сетки, ограждающей машины по всей площади, у нее имеется подключение к контуру заземления.

Благодаря такой конструкции, поля электричества не проникают внутрь клетки Фарадея, а на магнитное поле она никак не влияет. Электрические кабели, покрытые предварительно экраном из металлического листа, защищаются по таким же принципам.

Электростатический заряд можно оптимально уменьшить посредством возрастания токопроводимости промышленных материалов и проведением коронирования (т.е. создания на поверхности материалов воздушной плазмы коронным разрядом комнатной температуры). Достигается это с помощью специального подбора материалов, имеющих повышенную объемную проводимость, наращиванием рабочих площадей и повышением ионизации воздуха вокруг защищаемых механизмов. Специальные агрегаты – ионизаторы, генерируют положительно и отрицательно заряженные ионы, которые притягиваются к противоположно заряженным диэлектрикам и нейтрализуют их заряды.

Важно! Для веществ с высоким электросопротивлением такие способы защиты от статики не подходят.

Обязательным в перечне мероприятий по защите от статического электричества является заземление. В состав заземляющего устройства входит заземлитель (проводящий элемент) и проводник заземления между заземляющей точкой на почве и заземлителем. Достаточным заземление против электростатики считается при сопротивлении в любой точке оборудования не выше 1 мегаОм. Для оборудования часто используются проводящие пленки, покрывающие рабочую поверхность.

В рабочих помещениях настилаются антистатические полы, операторы должны работать в антистатической одежде и обуви (при этом сопротивление материала подошв не выше 100 ом).

Защита от статического электричества в быту

В бытовых условиях существует комплекс мер и мероприятий, помогающих предотвратить образование электростатических разрядов:

  • влажная уборка, проводимая каждый день, снижает объем циркулирующей в воздухе пыли;
  • недопущение пересыхания воздуха, ежедневное проветривание помещений;
  • применение в уборке антистатических щеток;

  • использование антистатических предметов мебели;
  • отделка дома материалами, которые хорошо снимают статику: древесина, антистатический линолеум и другие;
  • что касается одежды, шерстяную одежду снимать медленными движениями, а для снятия эффекта прилипания шелковых вещей – использовать антистатические спреи;
  • не гладить шерсть животных при холодном и сухом воздухе;
  • волосы расчесывать расческами из дерева или металла вместо пластиковых гребней.

Не стоит забывать о защите личных автомобилей от образования статики на кузове машины, особенно перед заправкой его бензином. Делается это с помощью простой антистатической полоски под днищем кузова.

Статическое электричество – это свободные электрические заряды, собираемые на различных диэлектриках. И в промышленности, и в быту происходит накопление совсем неполезного статического электричества, и необходима защита от него, поскольку такие заряды способны нанести вред как машинам, механизмам, так и промышленным объектам и здоровью человека. Только надежные методы способны свести на нет или же совсем не допустить этого отрицательного явления.

Видео

Защита от атмосферного и статического электричества

Защита от атмосферного и статического электричества.

Атмосферное электричество. Разряды атмосферного и статического электричества могут явиться причиной поражения людей током, возникновения пожаров и взрывов.

Особенно подвержены поражению молнией объекты, значительно возвышающиеся над земной поверхностью (мачты, надстройки судов, трубы заводов, высотные здания). В этих местах резко возрастает напряженность электрического поля, что и способствует возникновению благоприятных условий для разряда. Токи атмосферного электричества всегда избирают к земле кратчайшийпуть наименьшего сопротивления. Это обстоятельство используется для создания заранее запрограммированного пути разряда молнии в землю через металлические мачты, поднятые над защищаемым объектом. Такие устройства назвали молниеотводами.

Грозовые разряды могут поражать наземные объекты прямыми ударами молнии, разрушая их (первичное воздействие), а также влиять на них в виде электрической индукции (вторичное воздействие) без прямого контакта с каналом молнии. Электромагнитная индукция сопровождается возникновением в пространстве изменяющегося во времени магнитного поля. Это магнитное поле индуцирует в замкнутых контурах, образованных металлическими конструкциями (электропровода, трубопроводы и пр.), электрические токи, вызывающие их нагревание.

Особую опасность может представлять э.д. с, возникающая в незамкнутых и незаземленных контурах судов, перевозящих нефтепродукты и другие опасные грузы. Возможное искрение может стать причиной взрывов и пожаров на судах.

Для защиты от искрения при электрической индукции рекомендуют для конструктивных мер: соединение металлическими перемычками параллельно проложенных кабелей и труб, заземление оболочек кабелей и трубопроводов в местах ввода их в здания и т. д.

Для предохранения наземных объектов от разрушения и пожаров, вызываемых молнией, выполняется комплекс защитных мероприятий, называемых молниезащитой. Основной элемент молниезащиты — применение системы молниеотводов, которые в зависимости от вида молниеириемника подразделяются на стержневые, тро­совые и сетчатые.

Составные части молниеотвода: молниеприемник, собственно молниеотвод и заземлитель. Все эти части ме­таллические.

Наиболее простой и надежной системой молниезащиты является стержневая, представляющая собой металлические хорошо заземленные стержни, прикрепленные к мачтам или опорам.

Судовые молниезащитные устройства в принципе не отличаются от береговых. Каждая мачта на судне снабжается молниеотводом. Объект считается защищенным от прямых ударов молнии, если зона защиты, образуемая молниеотводом, охватывает все его конструктивные элементы.

Зоной защиты называют пространство, образуемое вокруг каждого молниеотвода, вероятность попадания молнии в которое практически равна нулю.

Судовые радиоантенны, как правило, находятся в зоне защиты стержневых молниеотводов, прикрепленных к мачтам. Однако несмотря на это, во время грозы необходимо принять все меры предосторожности для защиты радиоаппаратуры и обслуживающего ее персонала от грозовых разрядов. Дело в том, что при прямом попадании молнии в радиоантенну в ней может индуктироваться э. д. с. опасного для людей и оборудования уровня. Поэтому во время грозы начальник радиостанции обязан прекратить работу радиоузла и заземлить антенны.

Статическое электричество. Многие производственные процессы на флоте сопровождаются явлением статической электризации. Заряды статического электричества образуются при трении двух диэлектриков или диэлектрика о металл. В связи с широким применением в современном судостроении пластмасс и других полимерных материалов для изготовления арматуры и элементов отделки судовых помещений заряды статического электричества на судах стали достигать опасных значений.

Возникновение статического электричества обычно связано с движением газов, паров, пыли по вентиляци-путь наименьшего сопротивления. Это обстоятельство используется для создания заранее запрограммированного пути разряда молнии в землю через металлические мачты, поднятые над защищаемым объектом. Такие устройства назвали молниеотводами.

Грозовые разряды могут поражать наземные объекты прямыми ударами молнии, разрушая их (первичное воздействие), а также влиять на них в виде электричской индукции (вторичное воздействие) без прямого контакта с каналом молнии. Электромагнитная индук­ция сопровождается возникновением в пространстве изменяющегося во времени магнитного поля. Это магнитное поле индуцирует в замкнутых контурах, образованных металлическими конструкциями (электропроводка, трубопроводы и пр.), электрические токи, вызывающие их нагревание.

Особую опасность может представлять э.д. с, возникающая в незамкнутых и незаземленных контурах судов, перевозящих нефтепродукты и другие опасные грузы. Возможное искрение может стать причиной взрывов и пожаров на судах.

Для защиты от искрения при электрической индукции рекомендуют для конструктивных мер: соединение металлическими перемычками параллельно проложенных кабелей и труб, заземление оболочек кабелей и трубопроводов в местах ввода их в здания и т. д.

Для предохранения наземных объектов от разрушения и пожаров, вызываемых молнией, выполняется комп­екс защитных мероприятий, называемых молниезащи-той. Основной элемент молниезащиты — применение системы молниеотводов, которые в зависимости от вида молниеириемника подразделяются на стержневые, тросовые и сетчатые.

Составные части молниеотвода: молниеприемник, собственно молниеотвод и заземлитель. Все эти части металлические.

Наиболее простой и надежной системой молниеза­щиты является стержневая, представляющая собой металлические хорошо заземленные стержни, прикрепленные к мачтам или опорам.

Судовые молниезащитные устройства в принципе не отличаются от береговых. Каждая мачта на судне снабжается молниеотводом. Объект считается защищенным от прямых ударов молнии, если зона защиты, образуемая молниеотводом, охватывает все его конструктивные элементы.

Зоной защиты называют пространство, образуемое вокруг каждого молниеотвода, вероятность попадания молнии в которое практически равна нулю.

Судовые радиоантенны, как правило, находятся в зоне защиты стержневых молниеотводов, прикрепленных к мачтам. Однако несмотря на это, во время грозы необходимо принять все меры предосторожности для защиты радиоаппаратуры и обслуживающего ее персонала от грозовых разрядов. Дело в том, что при прямом попадании молнии в радиоантенну в ней может ин­дуктироваться э. д. с. опасного для людей и оборудования уровня. Поэтому во время грозы начальник радиостанции обязан прекратить работу радиоузла и заземлить антенны.

Статическое электричество. Многие производственные процессы на флоте сопровождаются явлением статической электризации. Заряды статического электричества образуются при трении двух диэлектриков или диэлектрика о металл. В связи с широким при­менением в современном судостроении пластмасс и других полимерных материалов для изготовления арматуры и элементов отделки судовых помещений заряды статического электричества на судах стали достигать опасных значений.

Возникновение статического электричества обычно связано с движением газов, паров, пыли по вентиляци-

онным каналам, огнеопасных жидкостей по трубопрово­дам, при трении твердых веществ. При этом разность потенциалов статического электричества может дости­гать 20—50 кВ. Опасность этого явления очевидна, если принять во внимание, что при разности потенциалов, равно 3 кВ, искровой электростатический разряд мо­жет воспламенить большинство горючих газов, а при 5 кВ — большую часть горючей пыли. Таким образом, при перевозке опасных грузов статическое электричест­во может стать причиной пожара или даже гибели судна.

Возможность электризации до высоких потенциалов зависит от электропроводимости веществ, их химиче­ского состава, состояния окружающей среды, скорости относительного перемещения частиц.

В некоторых случаях накопителем статического элек­тричества становится человек. Электрический потенци­ал может появиться при длительном хождении челове­ка в сухую погоду в резиновой обуви по бетону, асфаль­ту, по полу с синтетическим покрытием. Электризация тела человека происходит также в процессе ношения им одежды из синтетических материалов (капрон, ацетат­ный шелк, нейлон), прочно вошедших в быт современ­ных людей.

Биологическое воздействие статического электриче­ства на человека еще полностью не изучено. Определена приблизительная норма допустимой (безвредной) на­пряженности электрического поля, созданного электро­статическим зарядом. Согласно Санитарным правилам напряженность поля статического электричества, гене­рируемого на поверхности полимерного материала, с которым контактирует человек, не должна превышать 200 В/см.

На судах воздействие статического электричества на человека выражается в угнетенном состоянии его психики, снижении работоспособности, а также в неприятных, болевых ощущениях от электрических разрядов при касании поверхностей, отделанных пластиками. Известны случаи пожаров, возникших от искровых разрядов при прикосновении наэлектризованного тела человека к пожароопасному объекту.

Для борьбы со статическим электричеством разработан комплекс конструктивных и технологических мер, получивших отражение в Правилах по защите от статического электричества на морских судах, которые введены в действие с 1 октября 1973 г. Правилами, в частности, запрещено использование на судах, перевозящих опасные грузы (танкерах, газовозах), постельного белья, занавесей, ковриков и других предметов из синтетических тканей. Членам экипажей таких судов не рекомендуется носить в рейсах белье и одежду из искусствен­ного волокна. Перед швартовкой синтетические швартовные канаты рекомендуется смачивать забортной водой для снижения вероятности образования электростатических зарядов.

Одним из основных видов защиты от статического электричества является заземление. Необходимо заземлять все изолированные части оборудования, в том числе шланги и трубопроводы, предназначенные для приема и слива огнеопасных жидкостей, а также емкости для хранения и перевозки сжиженных газов и других опасных грузов. На танкерах должны быть предусмотрены устройства для присоединения металлических заземлителей, соединенных с наконечниками приемных шлангов.

Читайте также:  Единица измерения освещения: как и в чем измеряется уровень освещенности помещения

Специальные шины, проложенные вдоль шлангов, должны быть надежно соединены между собой и с корпусом судна. Не допускается наличие каких-либо плавающих предметов на поверхности пожароопасных жидкостей. Поплавковые измерители уровней жидкости необходимо крепить таким образом, чтобы исключить возможность отрыва их и удара в стенки цистерны во

избежание искрового разряда. Подачу огнеопасных жид­костей необходимо осуществлять плавно, без разбрызгиваний и таким образом, чтобы исключить образова­ние свободно падающей струи. Поэтому сливная труба должна достигать дна приемного резервуара, а струя направляться вдоль его стенок. Не рекомендуется производить отбор проб жидкости на анализ во время налива и слива. Это можно делать только тогда, когда жидкость успокоится и ее поверхность будет ровной.

Установлено, что статическая электризация диэлектриков может быть уменьшена и устранена путем увеличения их поверхностной проводимости. Поверхностную проводимость можно увеличить повышением относительной влажности воздуха и применением антистатических присадок к пластмассам.

Повышенная влажность воздуха в помещении (70% и выше) способствует резкому увеличению проводимости предметов. В таких условиях электрические заряды по мере их образования стекают с поверхности полимерных материалов и нейтрализуются. При достижении относительной влажности воздуха 90% заряды Статического электричества практически исчезают.

Снижение вероятности накопления электростатиче­ских зарядов достигается также созданием временной или постоянной поверхностной пленки из веществ (антистатиков), обладающих высокой электрической проводимостью. Применение полупроводниковых керамических покрытий, а также нанесение на поверхности деталей покрытий из окисла олова, хлорида олова и других веществ способствует повышению электрической проводимости материалов.

Кроме того, при уменьшении скорости движения жидкостей или газов, а также ионизации воздуха или среды предотвращается достижение электростатическим потенциалом опасного уровня. Воздух можно ионизировать с помощью радиоактивного излучения.

Дата добавления: 2014-01-03 ; Просмотров: 2657 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Атмосферное электричество

ФИЗИЧЕСКАЯ ПРИРОДА И ОПАСНЫЕ ФАКТОРЫ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Атмосферное электричество образуется и концентрируется в облаках — образованиях из мелких водяных частиц, находящихся в жидком и твердом состоянии.

Площадь океанов и морей составляет 71 % поверхности земного шара. Каждый 1 см 2 поверхности Земли в течение года в среднем получает 460 кДж солнечной энергии. Подсчитано, что из этого количества 93 кДж/(см*год) расходуется на испарение воды с поверхности водных бассейнов. Поднимаясь вверх, водяные пары охлаждаются и конденсируются в мельчайшую водяную пыль, что сопровождается выделением теплоты парообразования (2260 кДж/л). Образовавшийся избыток внутренней энергии частично расходуется на эмиссию частиц с поверхности мельчайших водяных капелек. Для от

деления от молекулы воды протона (Н) требуется 5,1 эВ, для отделения электрона —12,6 эВ, а для отделения молекулы от кристалла льда достаточно 0,6 эВ, поэтому основными эмитируемыми частицами являются молекулы воды и протоны. Количество эмитируемых протонов пропорционально массе частиц. Результирующий поток протонов всегда направлен от более крупных капелек к мелким. Соответственно более крупные капельки приобретают отрицательный заряд, а мелкие — положительный. Чистая вода — хороший диэлектрик и заряды на поверхности капелек сохраняются длительное время. Более крупные тяжелые отрицательно заряженные капельки образуют нижний отрицательно заряженный слой облака. Мелкие легкие капельки объединяются в верхний положительно заряженный слой облака. Электростатическое притяжение разноименно заряженных слоев поддерживает сохранность облака как целого.

Эмиссия протонов возникает дополнительно при кристаллизации водяных частиц (превращении их в снежинки, градинки), так как при этом выделяется теплота плавления, равная 335 кДж/л. При соударениях капелек, снежинок, градинок работа ветра в конечном счете приводит к эмиссии протонов, к изменению величины заряда частиц. Следовательно, атмосферное электричество (АтЭ) и статическое электричество (СтЭ) имеют одинаковую физическую природу. Различаются они масштабом образования зарядов и знаком эмитируемых частиц (электроны или протоны).

О единстве природы АтЭ и СтЭ свидетельствуют опытные данные. Сухой снег представляет собой типичное сыпучее тело; при трении снежинок друг о друга и их ударах о землю и о местные предметы снег должен электризоваться, что и происходит в действительности. Наблюдения на Крайнем Севере и в Сибири показывают, что при низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, в облаках снежной пыли бывают видны синие и фиолетовые вспышки, наблюдается свечение остроконечных предметов, образуются шаровые молнии. Очень ;ильные метели иногда заряжают телеграфные провода так сильно, что подк:лючаемые к ним электролампочки светятся полным накалом. Те же явления наблюдаются во время сильных пыльных (песчанных) бурь.

Наличие множества взаимодействующих факторов дает сложную картину распределения зарядов АтЭ в облаках и их частях. По экспериментальным данным нижняя часть облаков чаще всего имеет отрицательный заряд, а верхняя — положительный, но может иметь место и противоположная полярность частей облака. Облака могут также нести преимущественно заряд одного знака.

Заряд облака (части облака) образуют мельчайшие одноименно заряженные частицы воды (в жидком и твердом состоянии), размещенные в объеме нескольких км 3 .

Электрический потенциал грозового облака составляет десятки миллионов вольт, но может достигать 1 млрд. В. Однако общий заряд облака равен нескольким кулонам.

Основной формой релаксации зарядов АтЭ является молния— электрический разряд между облаком и землей или между облаками (частями облаков). Диаметр канала молнии равен примерно 1 см, ток в канале молнии составляет десятки килоампер, но может достигать 100 кА, температура в канале молнии равна примерно 25 000°С, продолжительность разряда составляет доли секунды.

Молния является мощным поражающим опасным фактором. Прямой удар молнии приводит к механическим разрушениям зданий, сооружений, скал, деревьев, вызывает пожары и взрывы, является прямой или косвенной причиной гибели людей. Механические разрушения вызываются мгновенным превращением воды и вещества в пар высокого давления на путях протекания тока молнии в названных объектах. Прямой удар молнии называют первичным воздействием атмосферного электричества.

К вторичному воздействию АтЭ относят: электростатическую и электромагнитную индукции; занос высоких потенциалов в здания и сооружения.

Рассмотрим опасные факторы вторичного воздействия АтЭ. Образовавшийся электростатический заряд облака наводит (индукцирует) заряд противоположного знака на предметах, изолированных от земли (оборудование внутри и вне зданий, металлические крыши зданий, провода ЛЭП, радиосети и т. п.). Эти заряды сохраняются и после удара молнии. Они релаксируют обычно путем электрического разряда на ближайшие заземленные предметы, что может вызвать электротравматизм людей, воспламенение горючих смесей и взрывы. В этом заключается опасность электростатической индукции.

Явление электромагнитной индукции заключается в следующем. В канале молнии протекает очень мощный и быстро изменяющийся во времени ток. Он создает мощное переменное во времени магнитное поле. Такое поле индуцирует в металлических контурах электродвижущую силу разной величины. В местах сближения контуров между ними могут происходить электрические разряды, способные воспламенить горючие смеси и вызвать электротравматизм.

Занос высоких потенциалов в здание происходит в результате прямого удара молнии в металлокоммуникации, расположенные на уровне земли или над ней вне зданий, но входящие внутрь зданий. Здесь под металлокоммуникациями понимают рельсовые пути, водопроводы, газопроводы, провода ЛЭП и т. п. Занесение высоких потенциалов внутрь здания сопровождается электрическими разрядами на заземленное оборудование, что может привести к воспламенению горючих смесей и электротравматизму людей.

ЗАЩИТА ОТ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по классификации Правил устройства электроустановок (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305— 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б — не менее 95 %.

По I категории организуется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1 и В-П (см. гл. 20). Зона защиты для всех объектов (независимо от места расположения объекта на территории СССР и от интенсивности грозовой деятельности в месте расположения) применяется только типа А.

По II категории осуществляется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1а, В-16 и В-Па. Тип зоны защиты при расположении объектов в местностях со средней грозовой деятельностью 10 ч и более в год определяется по расчетному количеству N поражений объекта молнией в течение года:

при N 1 должна обеспечиваться зона защиты типа А. Порядок расчета величины N показан в нижеприведенном примере. Для наружных технологических установок и открытых складов, относимых по ПУЭ к зонам класса В-1г, на всей территории СССР (без расчета N) принимается зона защиты типа Б.

По III категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-1, П-2 и П-2а. При расположении объектов в местностях со средней грозовой деятельностью 20 ч и более в год и при N> 2 должна обеспечиваться зона защиты типа А, в остальных случаях — типа Б. По III категории осуществляется также молниезащита общественных и жилых зданий ,башен, вышек, труб, предприятий, зданий и сооружений сельскохозяйственного назначения. Тип зоны защиты этих объектов определяется в соответствии с указаниями СН 305—77.

Объекты I и II категорий устройства молниезащиты должны быть защищены от всех четырех видов воздействия атмосферного электричества, а объекты III категории — от прямых ударов молнии и от заноса высоких потенциалов внутрь зданий и сооружений.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникации на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Для защиты объектов от прямых ударов молнии сооружаются молниеот-воды, принимающие на себя ток молнии и отводящие его в землю.

Объекты I категории молниезащиты защищают от прямых ударов молнии отдельно стоящими стержневыми, тросовыми молниеотводами или молниеотводами, устанавливаемыми на защищаемом объекте, но электрически изолированными от него.

Отдельно стоящий стержневой молниеотвод (рис. 18.5, а) состоит из опоры 1 (высотой до 25 м — из дерева, до 5м — из металла или железобетона), молниеприемника 2 (стальной профиль сечением не менее 100 мм 2 ), токоотвода 3 (сечением не менее 48 мм 2 ) и заземлителя

4. Зона защиты молниеотвода представляет собой объем конуса, высота которого равна 0,8*5 им для зоны, типа А и 0,92 им — типа Б (им — высота молниеотвода). На уровне земли зона защиты образует круг радиусом Го, для зоны типа А го==(1,1—0,002/1м)Ам, для зоны типа Б Го==1,5/1м.

В тросовом молниеотводе (рис. 18.5, б) в качестве молниеприемника используется горизонтальный трос, который закрепляется на двух опорах. Токоотводы присоединяются к обоим концам троса, прокладываются по опорам и присоединяются каждый к отдельному заземлителю.

При установке молниеотвода на здании должно быть обеспечено безопасное расстояние Sв по воздуху между токоотводом и защищаемым объектом, исключающее возможность электроразряда между ними (рис. 18.5, в). Кроме того, для предупреждения заноса высоких потенциалов через грунт должно быть обеспечено безопасное расстояние Sз между заземлителем и металлокоммуникациями , входящими в здание (см. рис. 18.5, а); оно определяется по формуле Sз==0,5 Rи и должно быть не менее 3 м; Rн — импульсное электросопротивление заземлителя.

Импульсное электросопротивление заземлителя для каждого токоотвода на объектах I категории защиты должно быть не более 10 Ом.

Типовые конструкции заземлителей, удовлетворяющие этому требованию, приведены в инструкции СН 305—77.

Для защиты от ударов молнии объектов II категории применяют отдельно стоящие или установленные на защищаемом объекте не изолированные от него стержневые и тросовые молниеотводы. Допускается использование в качестве молниеприемника металлической кровли здания или молниеприемной сетки (из проволоки диаметром 6. 8 мм и ячейками 6Х6 м), накладываемой на неметаллическую кровлю (рис. 18.5, г).

В качестве токоотводов рекомендуется использовать металлические конструкции зданий и сооружений, вплоть до пожарных лестниц на зданиях. Импульсное сопротивление каждого заземлителя должно быть не более 10 Ом, для наружных установок — не более 50 Ом.

Защита объектов III категории от прямых ударов молнии организуется так же, как для объектов II категории, но требования к заземлителям ниже:

импульсное электросопротивление каждого заземлителя не должно превышать 20 Ом, а при защите дымовых труб, водонапорных и силосных башен, пожарных вышек—50 Ом.

Добавить комментарий