Получение и передача электроэнергии: источники генерации энергии, передача ее на большие расстояния

Получение, потребление, передача электроэнергии. Передача показаний электроэнергии

Развитость современного государства во многом зависит от эффективности производства и управления энергетическими ресурсами. Благодаря возможности обеспечения передачи на большие расстояния электричество стало наиболее распространенным видом энергии. Среди отличий данного энергоресурса выделяется и его способность к генерации. Кроме того, передача электроэнергии может осуществляться на высокой скорости, что упрощает технологические решения для организации сетей ее распределения и потребления. В конечном итоге этой энергией снабжается транспорт, дома, обеспечивается городская инфраструктура и т. д.

Получение

Лишь немногие обыватели задумываются о том, как электричество, на котором работают окружающие их приборы и оборудование, вырабатывается. Возможно, многих удивит, но энергии как объекта материи не существует – она является не более чем силой, сообщаемой одними предметами другим. В природе подобные процессы происходят сплошь и рядом. Наблюдая такие явления, человек стал разрабатывать способы целенаправленной выработки и направления энергии для определенных нужд. На данный момент передача и распределение электроэнергии действуют как необходимый компонент хозяйственной и промышленной деятельности любого государства. Однако на первом этапе все же остается ее производство, в котором участвуют различные виды электростанций.

Тепловые электростанции

Это один из старейших и наиболее распространенных генераторов электроэнергии. Такие станции преобразуют тепловую энергию, которая формируется путем выделения в процессе сжигания топлива органического происхождения. Но перед тем как перейти в состояние электричества, химическая топливная энергия преобразуется в механическую. В качестве топливного сырья применяется торф, уголь, мазут и т. д. В зависимости от того, какая передача электроэнергии требуется в конкретном районе или регионе, могут использоваться два вида станций. В частности, конденсационные комплексы предназначены исключительно для производства электроэнергии, а ТЭЦы (теплоэлектроцентрали) помимо электричества также осуществляют выработку тепловой энергии, которой чаще снабжаются промышленные предприятия.

Гидроэлектростанции

Такие станции представляют собой комплекс в виде строений и оборудования, за счет которых происходит преобразование энергии воды в электричество.

Гидроэлектростанции включают в себя цепь технических конструкций, которые обеспечивают оптимальную концентрацию водяных потоков и создают достаточный по силе напор. В непосредственном преобразовании энергии потока воды участвует энергетическое оборудование. Как правило, получение и передача электроэнергии на гидроэлектростанциях происходят в результате концентрации механической силы в водопадах на эксплуатируемых участках плотин. В машинном отделе станции работают гидроагрегаты, автоматические системы для контроля и управления, а также центральный пост диспетчерского управления.

Атомные электростанции

В атомных электростанциях происходит преобразование ядерной энергии. В качестве основного генератора выступает реактор, из которого выделяется тепло в процессе деления ядер тяжелых элементов. Это осуществляется по цепной реакции, в результате которой происходит выработка, а затем и передача электроэнергии с ее распределением. По сравнению с традиционными тепловыми станциями атомные реакторы функционируют не на органическом топливе, а на ядерной энергии, получаемой от плутония, урана и других элементов. Примечательно, что мировые запасы ядерных ресурсов в виде упомянутых тяжелых элементов превышают природные объемы нефти, угля, торфа и других представителей органического топлива. Это делает атомную энергетику весьма перспективной, хотя с точки зрения экологической безопасности такое соотношение трудно назвать благоприятным.

Передача электроэнергии по сетям

Для обеспечения передачи энергии используются электрические сети. Данная инфраструктура представляет собой комплекс электроустановок, реализующих трансляцию и распределение энергоресурса от вырабатывающей его станции до конечного потребителя. В зависимости от назначения передача электроэнергии может выполняться по разным сетям. В частности, выделяются следующие разновидности:

  • Сети с общим назначением. Как правило, обеспечивают бытовые, транспортные, промышленные и сельскохозяйственные нужды.
  • Контактные сети. Их можно выделить в отдельную группу, которая обслуживает транспортные средства, питающиеся энергией в процессе движения. Это могут быть локомотивы, трамваи, поезда и др.
  • Электросети для снабжения технологических объектов. В данном случае передача электроэнергии на расстояние позволяет обслуживать удаленные производственные объекты, а также различные инженерные коммуникации.
  • Сети для автономного снабжения. Питают энергией автономные и мобильные единицы, среди которых – те же станции, самолеты, суда, космические аппараты и т. д.

Линии электропередач

Электрические сети, в свою очередь, формируются линиями электропередач (ЛЭП), которые бывают двух типов: переменного и постоянного тока.

Наиболее распространены ЛЭП переменного тока благодаря существенному преимуществу. Дело в том, что передача и потребление электроэнергии за счет понижающего трансформатора возможны на любом участке такой линии. Но есть и недостатки у ЛЭП переменного тока – к примеру, индуктивное сопротивление, которое ухудшает качество трансляции электроэнергии. Таким образом, на пути к потребителям не исключается снижение напряжения в линии.

Главное достоинство ЛЭП постоянного тока заключается как раз в отсутствии индуктивного сопротивления. Помимо этого, в проводах таких линий используется меньше металла, что способствует снижению радиопомех. В линиях постоянного тока передача и распределение электроэнергии осуществляются с меньшей нагрузкой на энергосистемы, не требуя четкой синхронности. Этим достигается и долговечность ЛЭП, и экономичность в их содержании.

Энергосбыт и потребление

Завершающей стадией в процессе обслуживания электроэнергии является ее сбыт и потребление. Так же как и все продукты на рынке, энергоресурсы продаются, но в данном случае схемы реализации сложнее. Расчеты осуществляются после того как была осуществлена передача показаний электроэнергии за ее эксплуатацию в жилом помещении, офисе или производственном объекте. Сбытом энергии занимаются специальные организации, выполняющие поставки произведенной электрической энергии.

При этом существует две разновидности сбыта. В первом случае его называют энерготрейдингом, предполагающим покупку ресурса на оптовом рынке у непосредственного производителя. Далее посредник организует работу с сетевыми компаниями, которые занимаются продажами рознично. На этом этапе вновь производится передача данных за электроэнергию от конечных потребителей с последующими расчетами. Во втором варианте реализуется схема, при которой производитель изначально предлагает свои услуги на розничном рынке.

Показания за электроэнергию

Тарифы на данный ресурс могут меняться в зависимости от разных факторов. Однако способы расчета, как правило, одни и те же. Сетевые компании или представители вырабатывающего энергию предприятия снимают показания приборов учета, после чего предъявляют потребителям счета. Но чаще всего передача показаний электроэнергии производится самими пользователями. Данные отправляются в офисы организаций, высылаются через онлайн-сервисы или диктуются по телефону. В каждой компании-поставщике также предусматриваются меры по взысканию задолженностей.

Важно отметить, что начисление сумм платежей может предусматривать учет планового и фактического потребления. После того как была осуществлена передача данных за электроэнергию, представители компании составляют выписку, выставляют счет и собирают платежи.

Заключение

Технико-научный прогресс демонстрирует, что мировой энергетический потенциал является ключевым фактором развития промышленности и производства, вместе с этим повышая эффективность транспортной инфраструктуры. Но для рядовых пользователей выработка и передача электроэнергии на расстояние, прежде всего, обеспечивает личный комфорт существования. За право пользоваться энергией люди готовы оплачивать немалые суммы по тарифам. Это говорит о полезности и спросе на электричество не только среди крупных промышленных предприятий, но и у простых обывателей, жизнь которых уже не обходится без электроприборов.

ИНФОФИЗ – мой мир.

Весь мир в твоих руках – все будет так, как ты захочешь

Адрес: г. Новороссийск
Телефон: Номер телефона
Почта: kalinelena@yandex.ru

Весь мир в твоих руках – все будет так, как ты захочешь

Как сказал.

Тестирование

Урок 44. Получение, передача и распределение электроэнергии.

Производство, передача и распределение электроэнергии.

Проблема обеспечения энергией уже в самое ближайшее время станет одной из наиболее острых среди глобальных проблем человечества. Более 60% энергии вырабатывается на тепловых электростанциях (ТЭС) на органическом топливе (уголь, нефтепродукты, газ, торф), примерно 18% – на атомных (АЭС) и гидроэлектростанциях (ГЭС), а остальные 2% – на солнечных, ветровых, геотермальных и прочих электростанциях.

Производство электрической энергии в России концентрируется преимущественно на крупных электростанциях. Потребители электрической энергии – промышленность, строительство, электрифицированный транспорт, сельское хозяйство, сфера бытового обслуживания расположены в городах и сельской местности. Центры потребления электроэнергии, как правило, удалены от ее источников зачастую на расстояния в сотни и даже тысячи километров и распределены на значительной территории. В связи с этим возникает задача транспортирования электроэнергии от станций к потребителям. Эту задачу выполняют электрические сети, состоящие из линий электропередачи (ЛЭП) и подстанций.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи (ЛЭП), и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток переменной частоты 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.

Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии.

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы.

Трансформатор – прибор для преобразования напряжения и силы переменного тока при неизменной частоте.

Он был изобретен П. Н. Яблочковым в 1876 году. В 1882 году трансформатор был усовершенствован И. Ф. Усагиным.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции.

Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.

Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток.

В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

В режиме нагрузки в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами. Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2. Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°.

При k>1 трансформатор называется повышающим, при k Подробности Просмотров: 25302

Передача электроэнергии — распространенные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I 2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры. Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы. Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные — более 750-ти кВ. Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ)Протяженность (км)
0,401,0
10,025,0
35,0100,0
110,0300,0
220,0700,0
500,02300,0
1150,0*4500,0*

* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Естествознание. 11 класс

Конспект урока

Естествознание, 11 класс

Урок 12. Преобразование и передача электроэнергии

Перечень вопросов, рассматриваемых в теме:

  • Какие способы передачи энергии на расстояние существуют?
  • Чем обусловлены потери энергии при передаче?
  • Чем выгоден каждый способ передачи электроэнергии?
  • Как уменьшить потери при передаче электроэнергии?

Глоссарий по теме:

Электромагни́тная инду́кция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении во времени магнитного поля или при движении материальной среды в магнитном поле.

Правило Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей.

Закон электромагнитной индукции (закон Фарадея).

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре Э.Д.С. индукции определяется формулой:

Первичной обмоткой называется та, на которую подается исходное напряжение от какого-либо источника переменного тока. Вторичная обмотка – обмотка, которая служит источником питания для потребителя. Обычно первичную обмотку обозначают индексом 1, а вторичную – индексом 2.

Трансформатор (от лат.transformare — «превращать, преобразовывать») — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Основная и дополнительная литература по теме урока:

  1. Александров, А. П. Атомная энергетика и научно-технический прогресс / А.П. Александров. – М.: Наука, 2015. – 272 c.
  2. Арутюнян, А. А. Основы энергосбережения / А.А. Арутюнян. – М.: Энергосервис, 2016. – 600 c.
  3. Демидов, В. И. Тепла Вам и света / В.И. Демидов. – М.: Лицей, 2009. – 254 c.
  1. https://moiinstrumenty.ru/elektro/obmotka-transformatora.html
  2. Якобсон, И.А. Испытания переключающих устройств силовых трансформаторов / И.А. Якобсон. – М.: Наука, 2006. – 56 c

Теоретический материал для самостоятельного изучения

В современном мире трудно представить себе даже несколько минут без электричества. Многие жизненно важные приборы, а также бытовая техника потребляют электроэнергию. Проблема передачи электроэнергии на различные расстояния: от маленьких деревень до многомиллионных городов до сих пор остается актуальной. Как это осуществить с минимальными потерями и наиболее эффективно?

Развитие цивилизации и научно-технический прогресс, связанный с использованием двигателей, потребовал решения не только задач производства энергии, но также задачи передачи энергии на расстояние. С давних пор известно два способа передачи топлива для двигателей: транспортный и более экономичный – трубопроводный, применяемые до сих пор. Но самый эффективный способ – по проводам. Французский физик М. Депре построил первую линию электропередачи в 1880 г. Однако, и этот способ не позволяет избежать потерь, связанных с нагревом подводящих проводов.

При простейшем способе передачи, когда источник электроэнергии (электрогенератор) связан проводами с потребителем, процесс передачи можно изобразить схемой, приведенной на Рис. 1

Обозначая полезную потребляемую мощность (мощность на нагрузке) через Wн, а паразитную мощность, идущую на нагревание проводов через Wп, получим для них выражения:

Из этих формул видно, что отношение мощностей равно отношению сопротивлений.

Чтобы уменьшить потери сопротивление подводящих проводов стараются сделать как можно меньше. Провода делают из хорошо проводящего материала – в основном из алюминия или меди и достаточно толстыми.

Уменьшить потери энергии в проводах по сравнению с энергией, которую нужно передать, можно, если уменьшить ток, текущий в проводах, по сравнению с током, который течет в приборах потребителя. Сделать это позволяет трансформатор, принцип действия которого основан на взаимопреобразовании электрического и магнитного полей. Трансформатор, история применения которого насчитывает почти полтора века, все это время служит человечеству верой и правдой. Его назначение — преобразование напряжения переменного тока. Это одно из немногих устройств, КПД которого может достигать почти 100%.

Самый простой трансформатор — это сердечник из ферромагнитного материала с большой магнитной проницаемостью (например, из электротехнической стали) и две намотанных на него обмотки (рис. 2). При пропускании через первичную обмотку переменного тока силой I1 в сердечнике возникает меняющийся магнитный поток Ф, которым пронизывается как первичная, так и вторичная обмотка.

В каждом из витков этих обмоток находится одинаковая по численному значению ЭДС индукции. Таким образом, отношения ЭДС в обмотках и витков в них одинаковы. На холостом ходу (I2 = 0) напряжения на обмотках практически равны ЭДС индукции в них, следовательно, для напряжений также выполняется соотношение:

N1 и N2 — число витков в обмотках.

Отношение U1 / U2 называют еще коэффициентом трансформации (k). Если U1 U2 — понижающим (рис 2). У первого трансформатора коэффициент трансформации больше, а у второго — меньше единицы. Поскольку КПД трансформатора близок к 100%, мощность в цепи первичной обмотки приблизительно равна мощности в цепи вторичной обмотки:

Следовательно, ток во вторичной обмотке меньше, чем ток в цепи потребителя. Так как потери на нагрев проводов в линии электропередачи пропорциональны , уменьшение тока в проводах линии электропередачи позволяет уменьшить потери энергии.

Один и тот же трансформатор, в зависимости от того к которой обмотке прикладывается, а с какой снимается напряжение, может быть как повышающим, так и понижающим.

Передача электроэнергии на большие расстояния

Рейтинг: 5 / 5 2 0 Передача электроэнергии на большие расстояния

Передача новостей на большие расстояния всего пару сотен лет назад казалась чем-то из области фантастики. Время почтовых голубей, издревле использовавшихся римлянами, персами, и египтянами, прошло после изобретения телеграфной связи. С уверенностью можно сказать, что с передачей энергии на большие дистанции в те же периоды истории дела обстояли гораздо хуже. Проводники с высоким сопротивлением, низкое напряжение, серьезная коммерческая борьба за использование постоянного тока – лишь некоторые из факторов, тормозивших развитие электрических систем и сетей.

Ни для кого не секрет, что энергетику можно назвать достаточно консервативной отраслью. Если сравнивать скорость развития тепло- и электроэнергетики с прогрессом в информационных технологиях за одинаковые периоды времени, то разница чувствуется особенно резко. Окружающие нас сенсорные дисплеи с ультравысоким разрешением, искусственный интеллект, повсеместный и универсальный доступ к сети Интернет заметно развились с начала этого столетия. Однако опоры линий электропередачи (ЛЭП) до сих пор несут на себе тысячи километров сталеалюминиевыех проводов, перегрузки предотвращаются автоматическими выключателями, не сильно изменившимися за последние 70 лет. Суперпроводники, работающие при комнатной температуре, так и остались артефактами на страницах научных журналов и научно-популярной литературы. Чем же вызвана кажущаяся неповоротливость энергетики? Какие факторы на это влияют? И как вообще происходит передача электроэнергии на большие расстояния? Обо всем по порядку.

Как отмечалось выше, исторически сложилось, что изначально сторонников передачи электричества с использованием постоянного тока было больше. Такой перевес не был обусловлен точными расчетами, имела место пропаганда в СМИ и реклама. Почему же сейчас в контексте передачи электроэнергии мы слышим лишь о переменном токе?

Все начинается с электростанций. И для производителей, и для потребителей электроэнергии экономически выгодно иметь один централизованной источник энергии, а не множество разрозненных. От таких центров питания финансово целесообразно прокладывать ЛЭП к потребителям. Как известно, мощность (а в каждый момент времени по проводам передается именно мощность) равна произведению напряжения на ток. Для получения одной и той же мощности можно либо увеличить ток и снизить напряжение, либо сделать наоборот.

Случай с низким напряжением и высоким током очень неэффективный, при такой стратегии потери электроэнергии на длинных ЛЭП могут составлять 60 и более процентов. Случай с высоким напряжением и низким током гораздо более выгодный. При использовании постоянного тока увеличение уровня напряжения составляет серьезную проблему, а вот с переменным этого добиться очень просто. Трансформаторы – это электрические машины, преобразующие электрическую мощность с низкого напряжения в мощность с высоким напряжением. Чем длиннее ЛЭП, тем под более высоким напряжением находятся ее провода. Кроме того, бесчисленное количество заводов и предприятий используют электродвигатели. Двигатели постоянного тока в сравнении с двигателями переменного тока безусловно проигрывают: их КПД ниже, в них больше трущихся частей, их конструкция сложнее. Поэтому большинство электродвигателей в мире – это двигатели переменного тока.

Теперь, зная ответ на вопрос, почему победа осталась за переменным током, можно взглянуть на энергосистему с большей высоты. Различные электростанции в разных уголках планеты производят электричество. Говоря упрощенно, от электрогенераторов на станциях провода тянутся к трансформаторной подстанции (ТП), повышающей напряжение до 35, 110, 330, или 750 кВ. Провода на опорах оттуда тянутся к потребителям – в города и на заводы, где напряжение снова понижается на понижающих ТП до уровня, необходимого потребителю. Это напряжения в 0.4, 1, 10 кВ. Точка, в которой соединяются две и более ЛЭП, называется электрической подстанцией. Таким образом различные электростанции одной страны связываются в одну энергосистему, а энергосистемы разных стран – в объединенную энергосистему.

Трансформатор на подстанции

Передача энергии на большие расстояния – это всегда вопрос компромисса. Что выгоднее: строить новую электростанцию или прокладывать ЛЭП от существующих станций на огромное расстояние? Например, суммарная протяженность ЛЭП в Беларуси на начало 2019 года составляла почти 280 000 км. Где и как строить линию электропередачи? При монтаже опор огромное значение играет рельеф местности и характер грунта, а также наличие населенных пунктов, дорог и деревьев.

От потребляемой мощности зависит напряжение сети. От мощности, напряжения, и, как ни странно, погоды зависит выбор проводов, изоляторов и опор. При строительстве энергоемких предприятий надо решить: питаться от существующей подстанции или монтировать ТП в цеху? В целом при строительстве объектов решается вопрос о категории электроснабжения, то есть нужно ли прокладывать резервные линии и если да, то сколько? Отдельный и сложный вопрос представляет собой устойчивость энергосистемы, то есть ее способность функционировать, когда пропадает питание от электростанций или ЛЭП вследствие запланированного ремонта или аварии.

На данный момент принимается множество решений для модернизации энергосистем, например, привычные провода заменяют на алюминиевые с композитным тросом вместо стального. Это уменьшает провис проводов, увеличивает безопасную зону вокруг ЛЭП и их надежность. В целом же человечество еще не вышло на революционно новые методы производства и передачи электроэнергии.

Пожалуй, можно сказать, что в современном мире электроэнергетика находится на третьем месте после воздуха и воды. Миллионы километров проводов и кабелей смонтированы, огромные генераторы (диаметром до 16 метров) прочно закреплены на земной поверхности, это и объясняет вынужденную неповоротливость и стратегическую важность высоковольтной электроэнергетики.

Для обслуживания и проверки ЛЭП и электрических сетей существуют лаборатории электрофизических измерений. К таким, например, относится компания «ТМРсила-М», имеющая многолетний опыт работы в энергетике и сформированная из опытных специалистов.

Производство, передача и распределение электрической энергии

Разделы: Технология

Все технологические процессы любого производства связаны с потреблением энергии. На их выполнение расходуется подавляющая часть энергетических ресурсов.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях.

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, гидроаккумулирующие, газотурбинные, а также маломощные электрические станции местного значения – ветряные, солнечные, геотермальные, морских приливов и отливов, дизельные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

При экономичной работе ТЭС, т.е. при одновременном отпуске потребителем оптимальных количеств электроэнергии и теплоты, их КПД достигает более 70 %. В период, когда полностью прекращается потребление теплоты (например, в неотопительный сезон), КПД станции снижается.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Различают ГЭС плотинного и деривационного типов. Плотинные ГЭС применяют на равнинных реках с небольшими напорами, деривационные (с обходными каналами) – на горных реках с большими уклонами и при небольшом расходе воды. Следует отметить, что работа ГЭС зависит от уровня воды, определяемого природными условиями.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Большинство электростанций объединены в энергетические системы, к каждой из которых предъявляются следующие требования:

  • Соответствие мощности генераторов и трансформаторов максимальной мощности потребителей электроэнергии.
  • Достаточная пропускная способность линий электропередач (ЛЭП).
  • Обеспечение бесперебойного электроснабжения при высоком качестве энергии.
  • Экономичность, безопасность и удобство в эксплуатации.

Для обеспечения указанных требований энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций. Диспетчерский пункт получает необходимые данные и сведения о состояниях технологического процесса на электростанциях (расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.); о работе системы – какие элементы системы (линии, трансформаторы, генераторы, нагрузки, котлы, паропроводы) в данный момент отключены, какие находятся в работе, в резерве и т.д.; об электрических параметрах режима (напряжениях, токах, активных и реактивных мощностях, частоте и т.д.).

Работа электростанций в системе даёт возможность за счёт большого количества параллельно работающих генераторов повысить надёжность электроснабжения потребителей, полностью загрузить наиболее экономические агрегаты электростанций, снизить стоимость выработки электроэнергии. Кроме того, в энергосистеме снижается установленная мощность резервного оборудования; обеспечивается более высокое качество электроэнергии, отпускаемой потребителям; увеличивается единичная мощность агрегатов, которые могут быть установлены в системе.

В России, как и во многих других странах, для производства и распределения электроэнергии применяется трёхфазный переменный ток частотой 50Гц (в США и ряде других стран 60Гц). Сети и установки трёхфазного тока более экономичны по сравнению с установками однофазного переменного тока, а также дают возможность широко использовать в качестве электропривода наиболее надёжные, простые и дешевые асинхронные электродвигатели.

Наряду с трёхфазным током в некоторых отраслях промышленности применяют постоянный ток, который получают выпрямлением переменного тока (электролиз в химической промышленности и цветной металлургии , электрифицированный транспорт и др.).

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500кВт и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи и получается большая экономия материалов за счёт сокращения сечений проводов. Поэтому в процессе передачи и распределения электрической энергии приходится повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, т.к. его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Повышение напряжения осуществляется при помощи повышающих трансформаторов на электростанциях, а понижение – при помощи понижающих трансформаторов на подстанциях у потребителей.

Промежуточным звеном для передачи электроэнергии от трансформаторных подстанций к приёмникам электроэнергии являются электрические сети.

Трансформаторная подстанция – это электроустановка, предназначенная для преобразования и распределения электроэнергии.

Подстанции могут быть закрытыми или открытыми в зависимости от расположения её основного оборудования. Если оборудование находится в здании, то подстанция считается закрытой; если на открытом воздухе, то – открытой.

Оборудование подстанций может быть смонтировано из отдельных элементов устройств или из блоков, поставляемых в собранном для установки виде. Подстанции блочной конструкции называются комплектными.

В оборудование подстанций входят аппараты, осуществляющие коммутацию и защиту электрических цепей.

Основной элемент подстанций – силовой трансформатор. Конструктивно силовые трансформаторы выполняются так, чтобы максимально отвести тепло, выделяемое ими при работе от обмоток и сердечника в окружающую среду. Для этого, например, сердечник с обмотками погружают в бак с маслом, делают поверхность бака ребристой, с трубчатыми радиаторами.

Комплектные трансформаторные подстанции, устанавливаемые непосредственно в производственных помещениях мощностью до 1000 кВА, могут оснащаться сухими трансформаторами.

Для увеличения коэффициента мощности электроустановки на подстанциях устанавливают статические конденсаторы, компенсирующие реактивную мощность нагрузки.

Автоматическая система контроля и управления аппаратами подстанции следит за процессами, происходящими в нагрузке, в сетях электроснабжения. Она выполняет функции защиты трансформатора и сетей, отключает при посредстве выключателя защищаемые участки при аварийных режимах, осуществляет повторное включение, автоматическое включение резерва.

Трансформаторные подстанции промышленных предприятий подключаются к питающей сети различными способами в зависимости от требований надёжности бесперебойного электроснабжения потребителей.

Типовыми схемами, осуществляющими бесперебойное электроснабжение, являются радиальная, магистральная или кольцевая.

В радиальных схемах от распределительного щита трансформаторной подстанции отходят линии, питающие крупные электроприёмники: двигатели, групповые распределительные пункты, к которым присоединены более мелкие приёмники. Радиальные схемы применяются в компрессорных, насосных станциях, цехах взрыво- и пожароопасных, пыльных производств. Они обеспечивают высокую надёжность электроснабжения, позволяют широко использовать автоматическую аппаратуру управления и защиты, но требуют больших затрат на сооружение распределительных щитов, прокладку кабеля и проводов.

Магистральные схемы применяются при равномерном распределении нагрузки по площади цеха, когда не требуется сооружать распределительный щит на подстанции, что удешевляет объект; можно использовать сборные шинопроводы, что ускоряет монтаж. При этом перемещение технологического оборудования не требует переделки сети.

Недостатком магистральной схемы является низкая надёжность электроснабжения, так как при повреждении магистрали отключаются все электроприёмники, присоединённые к ней. Однако установка перемычек между магистралями и применение защиты существенно повышает надёжность электроснабжения при минимальных затратах на резервирование.

От подстанций ток пониженного напряжения промышленной частоты распределяется по цехам с помощью кабелей, проводов, шинопроводов от цехового распределительного устройства до устройств электроприводов отдельных машин.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Правилами устройства электроустановок все приёмники электрической энергии по надёжности электроснабжения подразделяются на три категории:

  • Приёмники энергии, для которых недопустим перерыв в электроснабжении, поскольку он может привести к повреждению оборудования, массовому браку продукции, нарушению сложного технологического процесса, нарушению работы особо важных элементов городского хозяйства и в конечном счёте – угрожать жизни людей.
  • Приёмники энергии, перерыв в электроснабжении которых приводит к невыполнению плана выпуска продукции, простою рабочих, механизмов и промышленного транспорта.
  • Остальные приёмники электрической энергии, например цехи несерийного и вспомогательного производства, склады.

Электроснабжение приёмников электрической энергии первой категории в любых случаях должно быть обеспечено и при нарушении его автоматически восстановлено. Поэтому такие приёмники должны иметь два независимых источника питания, каждый из которых может полностью обеспечить их электроэнергией.

Приёмники электроэнергии второй категории могут иметь резервный источник электроснабжения, подключение которого производится дежурным персоналом через некоторый промежуток времени после отказа основного источника.

Для приёмников третьей категории резервный источник питания, как правило, не предусматривается.

Электроснабжение предприятий подразделяется на внешнее и внутреннее. Внешнее электроснабжение – это система сетей и подстанций от источника электропитания (энергосистемы или электростанции) до трансформаторной подстанции предприятия. Передача энергии в этом случае осуществляется по кабельным или воздушным линиям номинальным напряжением 6, 10, 20, 35, 110 и 220 кВ. К внутреннему электроснабжению относится система распределения энергии внутри цехов предприятия и на его территории.

К силовой нагрузке (электродвигатели, электропечи) подводится напряжение 380 или 660 В, к осветительной – 220 В. Двигатели мощностью 200 кВт и более в целях снижения потерь целесообразно подключать на напряжение 6 или 10 кВ.

Наиболее распространённым на промышленных предприятиях является напряжение 380 В. Широко внедряется напряжение 660 В, что позволяет снизить потери энергии и расход цветных металлов в сетях низшего напряжения, увеличить радиус действия цеховых подстанций и мощность каждого трансформатора до 2500 кВА. В ряде случаев при напряжении 660 В экономически оправданным является применение асинхронных двигателей мощностью до 630 кВт.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Внутренняя проводка – это электропроводка, проложенная внутри здания; наружная – вне его, по наружным стенам здания, под навесами, на опорах. В зависимости от способа прокладки, внутренняя проводка может быть открытой, если она проложена по поверхности стен, потолков и т.д., и скрытой, если она проложена в конструктивных элементах зданий.

Проводка может быть проложена изолированным проводом или небронированным кабелем сечением до 16 кв.мм. В местах возможного механического воздействия электропроводку заключают в стальные трубы, герметизируют, если среда помещения взрывоопасная, агрессивная. На станках, полиграфических машинах проводка выполняется в трубах, в металлических рукавах проводом с полихлорвиниловой изоляцией, не разрушающейся от воздействия на неё машинными маслами. Большое количество проводов системы управления электропроводом машины укладывается в лотках. Для передачи электроэнергии в цехах с большим количеством производственных машин применяются шинопроводы.

Для передачи и распределения электроэнергии широко применяются силовые кабели в резиновой, свинцовой оболочке; небронированные и бронированные. Кабели могут укладываться в кабельные каналы, укрепляться на стенах, в земляных траншеях, заделываться в стены.

Читайте также:  Освещение в ванной комнате: уровни подсветки, светильники для зоны умывания, купания и свободной
Добавить комментарий