Принцип работы светодиода: как работает лампа, технические характеристики и история ее создания

Великое открытие физиков двадцатого века: полупроводниковый светодиод

Светодиод — прибор полупроводникового типа с электронно-дырочным переходом, который излучает свет определенной длины волны под воздействием тока, пропускаемого в прямом направлении.

В основе светодиода лежит кристалл полупроводникового типа, закрепленный на основе из меди или алюминия. Сверху кристалл закрывается слоем силикона и линзой из пластмассы. Вместе они образуют оптическую систему.

Элементы помещают в корпус с контактами (анодом и катодом). Верхние слои кристалла, соприкасающиеся с контактными зонами, легированы донорскими и акцепторными аддитивами.

Открытие светодиода

Предпосылки к появлению твердотельных полупроводящих элементов заложил еще Майкл Фарадей в 1833 году, обнаружив повышение электрической проводимости в сульфиде серебра (полупроводнике) с ростом температуры. Фарадей не смог объяснить причину эффекта.

В 1874 году Фердинанд Браун описал проводимость электрического тока полупроводниками только в одном направлении. Но объяснить свойство, противоречащее закону Ома он не смог. Открытие Брауна стало востребованным спустя пол века, когда на его основе создали детекторный приемник.

Гринлиф Виттер Пикард в 1906 году запатентовал детектор кристаллической структуры. Он установил, что ряд таких кристаллических материалов, как галенит, кремний, и др., при контакте с металлом действует как выпрямитель и демодулятор переменного тока высокой частоты, который возникает в антенне при приеме радиоволн.

Впервые на эффект электролюминесценции обратил внимание английский ученый Генри Рауд в 1907 году. Проводя эксперименты с током, проходящим через металл-карборунд. Он заметил свечение, которое испускал твердотельный диод, изучил и описал его.

В 1923 году подобный эксперимент поставил советский экспериментатор Олег Лосев. Лосев проводил свой эксперимент независимо от Рауда, возможно, вовсе не знал о нем. Свечение ученый-физик (на тот момент лаборант) заметил при контакте карборунда со стальной проволокой.

В 1927 г Лосев получил патент на «Световое реле». Физик до конца жизни занимался исследованиями данной области. Нашел более эффективные полупроводники, создал удобный полупроводниковый прибор на основе цинкита, заметно повышающий качество радиоприема. Он сделал еще ряд важнейших открытий, которые легли в основу современных высокотехнологичных устройств на основе полупроводниковых светодиодов, в том числе, открыл явления предпробойной электролюминесценции и инжекционной люминесценции.

Вероятно, ученый имел шансы сделать еще более грандиозные научные достижения, но умер в блокадном Ленинграде. Судьба работ, над которыми он трудился последние годы жизни, неизвестна.

Лампы на основе полупроводниковых светодиодов стали выпускать в промышленных масштабах лишь в 1951 году.

1961 год ознаменовался открытием инфракрасного светодиода. Разработали и запатентовали его Р. Байард и Г. Питтман. Были запущены в производство индикаторные лампы с красным и желто-зеленым излучением.
В конце 1960-х Hewlett-Packard собрала первый в мире рекламный светодиодный дисплей, состоящий из красных диодов с очень низкой яркостью.

Открытия Лосева легли в основу научных изысканий японского физика Лео Исаки, который спустя 30 лет после открытия Лосева, установил, что прибор Лебедева являлся туннельным диодом, за что получил Нобелевскую премию в 1973 году.

В последующие годы ученые активно работали над увеличением яркости и диапазона излучения полупроводниковых светодиодов.

В 1970-х годах советский академик Жорес Иванович Алферов на базе арсенида галлия на подложке вырастил многопроходную двойную слоистую структуру, образованную полупроводниками с различной шириной запрещенной зоны (гетероструктуру). В области контакта таких полупроводников образуется повышенное количество носителей заряда, что в видимой, для человеческого глаза области, проявляется заметно более ярким свечением светодиодов, по сравнению с гомоструктурами (полупроводниками с единственной шириной запрещенной зоны).

Открытие было удостоено Ленинской и Нобелевской премий. После этого началось серийное промышленное производство светодиодов.

В 1976 году Hewlett-Packard запустил производство светодиодов с желтым, красно-оранжевым, желто-зеленым свечением.

Дж. Панковым были созданы светодиоды, излучающие фиолетовый и синий свет, однако срок их службы был настолько мал, что промышленного применения они не нашли.

Уже в середине 1980-х годов светодиоды массово производились в СССР, западных странах, Японии и Китае. Их стали применять в качестве самостоятельных осветительных приборов (карманные фонарики), монтировать в автомобили и пр.

Дальнейшее развитие светодиодной промышленности до не давнего времени было направлено на увеличение яркости, уменьшение размеров светодиодов и расстояния между ними, а также на повышение срока службы.

В последние время ученые делают акцент на создание органических светодиодов (OLED). Их главное достоинство — очень малые размеры и особенности производства. Органические полупроводниковые элементы наносит на подложку специальный «принтер». Технология напоминает струйную печать. Уже существуют OLED экраны. При уменьшении стоимости производства, они мгновенно получат широкое распространение.

Где применяют светодиоды?

Первые светодиоды, выпущенные серийно, были тусклыми их применяли как индикаторные лампы в различных приборах. С увеличением яркости расширилась область применения. Их стали устанавливать для подсветки в автотранспортных средствах. Начался выпуск портативных фонариков со светодиодными лампами.

В настоящее время, полупроводниковые светодиоды применяют повсеместно:

  • для освещения жилых и нежилых помещений;
  • освещения улиц;
  • в портативных фонариках;
  • в телефонах/смартфонах в качестве встроенных фонариков различной мощности;
  • в транспортных средствах;
  • для изготовления светодиодных вывесок/светодиодных табло;
  • для производства аптечных крестов;
  • в производстве интерьерных и экстерьерных светодиодных экранов различных конструкций для рекламы, спортивных трансляций, оформления сцен;
  • для изготовления светодиодных занавесей;
  • при оформлении архитектурных сооружений;
  • для создания уникального интерьера (светодиодные фигуры, экраны необычных форм);
  • при изготовлении информационных табло;
  • в приборостроении, в качестве индикаторов.

Что такое каркасы для светодиодных экранов и как их выбрать? Читайте об этом здесь.

Описание ТОП-10 самых известных медиафасадов вы найдете в нашей статье.

Какое будущее ждет светодиоды?

Несомненно, производство светодиодов — направление перспективное. Люди постепенно от ламп накаливания и опасных ртутных ламп переходят к светодиодным источникам освещения, которые потребляют значительно меньше энергии, дают много света и служат гораздо дольше обычных ламп. Ученые работают над усовершенствованием осветительных приборов на полупроводниковых светодиодах и создании еще большего разнообразия предложений на рынке.

Другое перспективное направление — органические светодиоды. Ввиду сравнительно высокой стоимости производства, они еще некоторое время будут оставаться довольно дорогими. На сегодняшний день, OLED уверенно производят 3 компании: Samsung, Panasonic, LG.

Технология, разработанная специалистами Kodak и выкупленная компанией LG, значительно легче в производстве, и позволяет создавать экраны больших размеров, чем технология конкурирующей Samsung.

Уже существуют и гибкие, прозрачные OLED смартфоны. Их серийное производство также считается перспективным.

3 thoughts on “ Великое открытие физиков двадцатого века: полупроводниковый светодиод ”

Просто удивительно как создание светодиода отразилось на мире. Сейчас куда не посмотри, всё либо сделано на основе этого изобретения, либо светодиоды являются обязательным элементом. Очень интересно что наш ждёт в дальнейшем, особенно в сфере органики. Будущее уже здесь, товарищи

Светодиодные лампы. История и современность

Тут баннер

3 марта 2015 г.

В настоящее время бешеными темпами набирают популярность светодиодные лампы. С каждым днём они становятся всё более востребованными. Попытаемся разобраться с вопросом о том, чем же так хороши эти источники света? Поговорить об из недостатках, конечно же, тоже забывать не будем. Но для начала немного истории появления светодиодных ламп.

История создания светодиодных ламп

Первое открытие, которое привело к появлению светодиодных ламп, было зафиксировано в 1907г. инженером из Англии Х.Д. Раундом. Причём, сделано это было абсолютно случайно. Раунд заметил, что вокруг детектора, с которым он работал, возникает свечение точечного контакта.

Дальнейшее развитие светодиоды получили в 1922 г. И серьёзно подошел к этому вопросу советский радиолюбитель 18-ти летний Олег Владимирович Лосев, который после многих экспериментов достиг внушительных положительных результатов. К сожалению этот изобретатель погиб в 1942 г. Но он успел получить четыре патента на практическое применение своих изобретений.

На основе «эффекта Лосева» в 1951 г. Курт Леговец, при участии физика В. Шокли, произвёл исследования по эффективным материалам для создания данного источника света. Их работа стала фундаментом новой отрасли – оптоэлектроники, появившейся в 1961 г.

Первые промышленные светодиоды в 1962 г. создал работник компании “Дженерал Электрик” Н. Холоньяк. Это были устройства с желто-зеленым и красным свечением.

В 70 – е годы ХХ века академиком Ж.И. Алфёровым было открыто явление сверхинжекции в гетеростуктурах. Вследствие этого им были разработаны новые полупроводниковые структуры. Исследования в этой области позволило создать целое направление в науке – гетеропереходы в полупроводниках. За свои труды в развитии физики Алфёров со временем был номинирован на Нобелевскую премию, которую и получил.

В 1972 Джоржд Крафорд, который учился у Н. Холоньяка в 10-ки раз усовершенствовал красный и красно-оранжевый светодиод, тем самым открыл их жёлтый аналог.

Чуть позже, в 1993 году Суджи Накамура, работник корпорации «Ничиа», добился высокого значения яркости у светодиода синего цвета, что позволило комбинировать его с другими устройствами и получать оттенки любого света.

В 2000 – х годах «белые» светодиоды имели уже достаточно хорошую степень яркости для того, чтобы выпускать их в массовом количестве для всего сегмента рынка.

Теперь поговорим о современных светодиодных лампах – что они из себя представляют, в чём их особенности, где применяют, какими характеристиками они обладают, об их достоинствах и недостатках.

Светодиодная лампа – это многокомпонентный прибор, при изготовлении которого не используют опасные вещества. За счёт чего он абсолютно безопасен. Конструкция лампы не очень сложная. То, что излучает свет – называют монокристаллом. Устанавливают его в металлической чашечке, которая является отражателем, потом заливают всё пластиком и светодиод готов.

Основной особенностью светодиодов является хорошая экономичность. При потребляемой мощности в 8 – 10 Вт он работает аналогично классической лампы накаливания, обладающей мощностью 100 Вт. Светодиодное устройство компактно, долговечно и способно на очень длительное время работы.

В настоящее время светодиодные лампы активно вытесняют другие источники света, во всех областях, где применяют осветительные приборы. К основным характеристикам данных ламп можно отнести светосилу, мощность и спектр свечения. Рассмотрим вопрос о том, из-за чего светодиод оставляет далеко позади всех своих конкурентов.

Самый главный параметр, который обеспечивает подавляющее превосходство светодиодных ламп над другими источниками освещения – это экономичность и очень низкое энергопотребление. При этом светят подобные лампы не хуже своих аналогов.

К достоинствам светодиодных ламп относятся, также, долговечность работы, точнее длительный срок безотказной службы и отсутствие бьющихся хрупких элементов в их конструкции.
Данные лампы могут прекрасно работать при достаточно низких температурах, но вот высоких температур они боятся, поэтому устанавливать их в бане или сауне не рекомендуется. Светодиодные лампы совершенно не греются и могут использоваться для подсветки каких-либо предметов.

Теперь пришло время упомянуть недостатки светодиодных ламп. Основной причиной, по которой многие люди отказываются от скорейшего перевода всех своих домашних осветительных приборов на работу со светодиодными лампами является достаточно высокая стоимость последних. Но на производственных объектах и в офисных центрах уже давно осуществляют замену старых источников света на эти лампы. Это объясняется тем, что по сравнению с квартирой экономия на энергозатратах в таких масштабах окупает стоимость светодиодных ламп достаточно быстро.

На этом можно подвести определённые итоги. Стоит ли бежать в магазин и закупать светодиодные лампы? Ответ на этот вопрос можно оставить на усмотрение лично каждого. Если не слишком пугает её цена, то установив один раз светодиодную лампу, можно на долго забыть о том, что такое замена сгоревшей лампы. В этом случае останется лишь одна проблема – периодически протирать люстру и светильники от осевшей на них пыли.

И ещё один момент – не стоит приобретать светодиодную лампу, которая была изготовлена неизвестным производителем и продаётся по довольно низкой цене. Ничего хорошего из этой экономии не получится – лампа очень скоро выйдет из строя.

Как устроена светодиодная лампа

С развитием электротехники традиционная лампа накаливания перестает быть единственным вариантом для освещения жилья. На смену ей пришли сначала люминесцентные, а затем и светодиодные (LED) источники света. Светодиодные лампы – энергоэффективные, яркие, безопасные для окружающей среды. Но их устройство заметно сложнее. В статье будет рассмотрено устройство светодиодной лампы, ее плюсы и минусы.

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым. По этой причине они и делятся на холодные и теплые соответственно.

Виды и типы светодиодных ламп.

Четкая классификация у светодиодных ламп отсутствует: изделия производятся слишком разных форм, цветов и конфигураций.

По способу применения выделяют три типа:

  1. Источники света общего назначения для освещения квартир и офисов. Характеризуются углом рассеивания от 20 0 до 360 0 .
  2. Изделия направленного света. Такие лампочки называют спотами. Они используются для создания подсветок или выделения интерьерных зон в комнате.
  3. Изделия линейного типа, схожие с привычными люминесцентными лампами. Изготавливаются в виде трубок. Применяются в технических помещениях, офисах, залах магазинов и в других пространствах, где важна пожарная безопасность. Создают яркую, красивую подсветку, которая подчеркнет необходимые детали.

По типу назначения светодиодные лампы делятся на:

  1. Изделия для уличного применения. Изготавливаются в пыле- и влагозащищенном корпусе.
  2. Изделия для производственных целей, коммунальных служб. Дополняются антивандальным прочным корпусом. Изготавливаются с особыми требованиями к характеристикам освещения: стабильность, срок службы, условия эксплуатации.
  3. Бытовые лампы. Характеризуются невысокой мощностью, стильным дизайном, электро- и пожаробезопасностью, качеством светового потока (индекс цветопередачи, коэффициент пульсации и др.).

Исходя из потребляемого напряжения тоже выделяют три вида ламп:

  1. С питанием 4 В. Маломощные светодиоды, которые потребляют от одного до 4,5 В. Излучают свет разных длин волн от инфракрасного до ультрафиолетового.
  2. С питанием 12 В. Такое напряжение безопасно для человека, поэтому эти источника света подходят для помещений с повышенной влажностью. Часто выпускаются без цоколя со штырьками, что усложняет процесс подключения. Дополнительной трудностью является необходимость специального блока питания, который снизит напряжение сети до 12 В. Удобны для использования автолюбителям и туристам: они могут организовать освещение от аккумулятора.
  3. С питанием 220 В. Самый распространенный вид изделий. Широко применяются для бытовых нужд.

Типы цоколей.

Чтобы LED источники света подходили к уже применяемой схеме электроснабжения домов, их оснащают винтовыми цоколями. В качестве альтернативы светильникам галогенного типа выпускают лампы со штырьковыми цоколями. Основные типы представлены в таблице.

Энергосберегающие светодиодные лампы

В этой статье: история светодиодов; светодиодная лампа — устройство; характеристики светодиодной лампы; производители и цены; выбор энергосберегающей лампы для дома.

Каким должны быть освещение в наших домах? На этот счет есть два мнения: домочадцев — свет должен быть приятным и не резким; руководителей страны — на освещение домов должно расходоваться как можно меньше электроэнергии. Неумолимый рост расценок на энергоносители мало понятен рядовому обывателю, его больше интересует вопрос «почему эти самые энергосберегающие лампы так дорого стоят». В этой статье будет подробно рассмотрены энергосберегающие светодиодные лампы, которые в самом ближайшем будущем, причем вне зависимости от желания или нежелания рядового потребителя, будут освещать наши дома. Разберемся, так ли они хороши, как их описывают?

История светодиодных ламп

Все началось в далеком 1907 году, когда английский инженер Генри Раунд, выключив освещение в лаборатории, случайно заметил свечение вокруг диодного контакта, находящегося под напряжением. Он решил, что свечение вызвано какой-то ошибкой в расчетах и не придал этому особого внимания, хотя и отметил этот факт в отчете.


Олег Владимирович Лосев

Спустя 16 лет после этого события советский физик Олег Владимирович Лосев занялся исследованием странного свечения, возникающего в месте пайки контактов диода из карбида кремния (карборунда). Лосев так и не выяснил природы свечения, отметив, что нагрева до высоких температур при этом не было — причина свечения таилась в каком-то электронном процессе, не известном науке тех лет. Результаты исследований Лосева по свечению диодов были переведены на несколько языков и опубликованы в ряде научных журналов, но особого интереса не вызвали. Привычные лампы с нитью накаливания в начале XX века считались вполне достаточными и незаменимыми — изобретать что-то новое не было необходимости.

Устойчивый интерес к свечению диодов возник во второй половине прошлого века, когда американский инженер Рубин Браунштейн заявил о своем открытии — диоды из арсенида галлия (GaAs) при подключении питания излучают инфракрасные лучи. По словам инженера точно такое же излучение было замечено им у диодов из фосфида индия (InP), антимонида галлия (GaSb) и состоящих из кремнево-германиевого сплава.

Первый инфракрасный диод был запатентован в 1961 году — американскими исследователями Гари Питманом и Робертом Бьярдом. Но использовать такие диоды для освещения помещений было невозможно, т.к. инфракрасные лучи находятся за пределами спектра, видимого человеческим глазом.


Американский учёный и изобретатель Ник Холоньяк

Создателем полноценного светодиода стал Ник Холоньяк-младший, создавший в 1962 году полноценный LED-светодиод, излучающий видимый красный свет. Именно Холоньяк считается «отцом» светодиодных ламп. Через 10 лет его ученик Джордж Крафорд создал первый светодиод, излучающий желтый свет, а также десятикратно усилил яркость красных и оранжево-красных светодиодов.

Однако особым коммерческим спросом новые источники света не пользовались — еще бы, ведь стоимость одного светодиода составляла в то время 200$ США. Первое коммерчески успешное производство светодиодов в 1968 году наладила американская компания «Monsanto», специализирующаяся на химической продукции, это были светодиоды из сплавов арсенида галлия и фосфида индия. Именно «Monsanto» сделала светодиоды популярными и широко распространенными в электронных калькуляторах и цифровых часах — в период с 1968 по 1970 год эта компания-монополист в области светодиодов продавала продукции в два раза больше, чем в каждом предыдущем месяце. Внедрением в электронику светодиоды обязаны компании «Hewlett-Packard», первой оценившей значение светодиодов для электроприборов и активно закупавшей их у «Monsanto».

В 1970 году монополия «Monsanto» на рынке светодиодов была прекращена — используя полупроводниковые чипы доктора Жана Эрни, американская компания «Fairchild Semiconductor» наладила выпуск дешевых светодиодов стоимостью в пять центов каждый.

Десятилетия светодиоды активно использовались в бытовой и промышленной электронике, но никак не для освещения помещений. Идея создания полноценных светодиодных ламп, способных освещать наши дома лучше, чем любые «лампы Ильича», возникла у Сюдзи Накамура, работавшего на японскую компанию «Nichia Corporation» — именно под его руководством инженеры компании создали в 1993 году первый синий светодиод высокой яркости.

Первый светодиод, испускающий яркий белый свет, был создан не так давно — в 1997 году, его создателем стал американский инженер Фред Шуберт.

Сегодня энергосберегающие светодиодные лампы уже существуют, но все еще проходят совершенствование, ведь первые светодиоды, интенсивность света которых стала равна и, в последствии, превысила яркость ламп с нитью накаливания, появились лишь в начале XXI века.

Как устроена и работает светодиодная лампа

Устройство любой современной лампы на светодиодах таково:

  • цоколь. Стандартный элемент любой лампы, предназначен для вкручивания в патрон светильника;
  • пускатель-балласт (драйвер), заключенный в пластиковый корпус с вентиляционными отверстиями. Преобразует переменный ток в постоянный, содержит более мощные конденсаторы, чем в схеме балласта люминесцентных ламп. Причина следующая — тепло, вырабатываемое диодами в светодиодных лампах, направлено не наружу, а внутрь ее корпуса, поэтому и требуются вентиляционные отверстия в корпусе балласта. Срок службы любой светодиодной лампы связан с количеством вентиляционных отверстий в корпусе и надежностью конденсаторов, а также от стабилитронов, выравнивающих напряжение в случае его перепадов;
  • алюминиевый радиатор. Его выступающие ребра расположены вдоль и по спирали, что улучшает отвод тепла;
  • плата, на которой установлены светодиоды. Выполнена из алюминия, на сторону, обращенную к радиатору, нанесена термопаста, отводящая тепло — 90% излучения тепла от светодиодов приходится на алюминиевую плату, в которой они установлены;
  • светодиоды, числом от 5-ти, обеспечивающие общую мощность лампы. От качества светодиодов зависит световой поток, генерируемый ими;
  • рассеиватель света, закрепленный на внутреннем кольце из алюминия. Производится из матового пластика, служит для равномерного рассеивания светового пучка от светодиодов. Практически не греется.

Основными элементами светодиодной лампы являются светодиоды — полупроводниковые приборы, преобразующие электрический ток в световое излучение. Любой светодиод состоит из не проводящей ток подложки, на которую уложен полупроводниковый кристалл — оба этих элемента заключены в корпус с выводами контактов с одной и линзой из пластика с другой стороны. Свободное пространство между линзой и кристаллом заполнено бесцветным силиконом, конструкция светодиода закреплена на алюминиевом основании, отводящем тепло и придающем светодиоду большую жесткость.

Почему же светодиод светится? Секрет свечения заключается в рекомбинации электронов между двумя контактами полупроводника с разной проводимостью. Кристалл полупроводника в местах вывода контактов проходит легирование акцепторной примесью, содержащей недостаточное число электронов, с одной стороны и донорской, где электроны имеются в изобилии, с другой. При подаче питания происходит рекомбинация электронов и возникающая при этом избыточная энергия превращается в видимый свет. На первый взгляд создается впечатление, что чем выше сила тока — тем более интенсивно будет свечение светодиода. Все верно, интенсивность световой энергии будет выше, но при этом из-за сопротивления в полупроводнике резко возрастет нагрев диода, что вызовет оплавление контактов или сгорание полупроводника.

Плюсы и минусы энергосберегающих светодиодных ламп

Существующие на сегодня светодиодные лампы обладают как преимуществами, так и недостатками — их разработка до полноценного источника света в наших домах еще не завершена.

Положительные характеристики:

  • наименьшее, по сравнению с любыми другими типами бытовых ламп, потребление электроэнергии — в 8-10 раз меньшее, чем у ламп с нитью накаливания;
  • высокая световая отдача, порядка 120 люменов на каждый затраченный ватт энергии. Для сравнения светоотдача «ламп Ильича» составляет от 10 до 24 лм на каждый ватт, у люминесцентных ламп — от 60 до 100 лм на ватт;
  • наивысший, по сравнению с любыми другими лампами освещения, срок службы порядка 50 000 часов, при условии качественного построения самой светодиодной лампы и применении в ее изготовлении высококачественных материалов;
  • получение различных характеристик спектра без использования светофильтров, т.е. по аналогии с лампами накаливания;
  • прочность и безопасность для пользователей. Светодиодная лампа при случайном падении не разобьется и не будет повреждена, т.е. осколков стекла, характерных для подобной ситуации с любой другой осветительной лампой, не будет. Ее элементы не содержат сколько-нибудь опасных компонентов химического происхождения, присутствующих, к примеру, в люминесцентных лампах;
  • не зависит от количества включений и отключений, в случае других ламп количество включений-отключений серьезно влияет на продолжительность службы;
  • безопасна в работе — не требуется ток высокого напряжения, наибольшая температура светодиода и ограждающей арматуры не превысит 60 °С.

Отрицательные характеристики:

  • высокая цена. Стоимость светодиодных ламп на сегодня превышает стоимость люминесцентных ламп аналогичной мощности в 8-10 раз. Снижение розничной цены без потери качества — главная задача производителей светодиодных ламп;
  • потребность в отводящем тепло радиаторе. Размеры светодиодов слишком малы и не достаточны для самостоятельного отвода тепла, выделяемого им при работе — чем мощнее светодиодная лампа, тем большего размера и площади радиатор ей необходим. Соответственно, внушительный размер алюминиевого радиатора влияет на себестоимость лампы, к тому же мощную светодиодную лампу будет трудно или невозможно установить в обычные светильники — она в них не поместится;
  • в отсутствии конденсатора, выравнивающего световой поток светодиодов, наблюдается заметная пульсация света;
  • при построении лампы на дешевых светодиодах ее светоотдача понижается до максимальных 100 лм/Вт и становится равной люминесцентным лампам, т.е. утрачивается важное преимущество светодиодной лампы;
  • световой спектр, генерируемый светодиодами, монохромен и существенно отличается от естественного солнечного освещения. Для смягчения монохромного светового излучения требуется люминофоры специального состава;
  • генерируемый световой поток узко направлен и требует установки нескольких разнонаправленных ламп или рассеивателя света, однако применение последнего существенно снижает интенсивность освещения.

Как выбрать светодиодную лампу для дома

В хозяйственных магазинах России энергосберегающие светодиодные лампы распространены не так широко, как люминесцентные — они дороже, поэтому пользуются меньшим спросом. Крупнейшие производители светодиодных ламп: американская «General Electric», немецкие «Osram», «Bioledex» и «BLV licht», голландская «Philips», индийская «Sylvania», российская «Оптоган» — стоимость их продукции варьируется от 600 до 3 000 руб. за одну лампу.

Помимо известных брендов, в магазинах часто встречаются недорогие светодиодные лампы китайских и небольших отечественных производителей — на мой взгляд, приобретать их продукцию не стоит, т.к. дешевизна скорее всего объясняется экономией на комплектующих, а значит такие лампы прослужат недолго.

А теперь о критериях выбора светодиодных ламп:

  • мощность лампы. 100 Вт лампе накаливания соответствует светодиодная в 12-15 Вт, причем световой поток 15 Вт светодиодной лампы будет немного более интенсивным, чем у «лампы Ильича» в 100 Вт;
  • температура света. На упаковке либо корпусе лампы будет нанесена температура света в кельвинах, привычный нам солнечный свет имеет температуру 2 700 — 3 000 К. Своим происхождением температура света ламп в кельвинах обязана цвету металлического бруска, нагреваемого в печи — до 3 000 К он желто-белого цвета, с нарастанием температуры становится все более белым. Лампы, излучающие свет большей температуры чем 3 000 К, более яркие, но их свет сложно переносится и уместен только в офисных помещениях;
  • угол освещения. Если все светодиоды в лампе будут расположены в одной плоскости, то характер освещения будет очаговым, узконаправленным — каждый светодиод излучает направленный световой поток. Для рассеивания света и эффективного освещения комнаты будет удобно, если светодиоды размещены на нескольких плоскостях, а сама лампа оснащена линзами рассеивания света, покрытыми изнутри люминофором;
  • коэффициент передачи цвета. Его значение должно быть указано на упаковке лампы, для светодиодов коэффициент обычно составляет от 70 до 95 — чем выше приведенное на упаковке значение, тем лучше будет светить светодиодная лампа и наоборот. Если на упаковке указано коэффициент цветопередачи 95, а стоимость самой лампы низка — это попытка обмануть покупателя, дешевые лампы не могут иметь столь высокую цветопередачу;
  • отвод тепла. Наличие алюминиевого радиатора обязательно и если вместо алюминия используется пластмасса — откажитесь от покупки данной лампы, она прослужит недолго;
  • время работы. Как правило, производителями указывается значение в 30 000 рабочих часов, что в действительности является средним значением. Сама лампа по прошествии этого срока будет работать и дальше, но ее яркость сократится примерно на 30% — нагрев светодиодов со временем снижает интенсивность светового потока.

Не сомневаюсь, что в ближайшие 5-10 лет светодиодные лампы будут усовершенствованы — количество люменов на каждый потребленный ватт возрастет, а стоимость существенно снизится. Они станут не менее популярными, как когда-то были лампы накаливания, только более выгодными и для рядового потребителя и для государства. Но на это уйдет время…

Электронные лампы – история, принцип действия, конструкция, применение

Электронная лампа (радиолампа) – техническое нововведение начала XX в., которое коренным образом изменило методы использования электромагнитных волн, определило становление и быстрый расцвет радиотехники. Появление радиолампы стало также важным этапом того направления развития и применения радиотехнических знаний, которое позже получило название “электроника”.

Открытие механизма работы всех ваккумных электронных приборов (теромоэлектронной эмиссии) совершил Томас Эдисон в 1883 году во время работы над усовершенствованием своей лампы накаливания. Подробнее об эффекте термоэлектронной эмиссии смотрите здесь – Электрический ток в вакууме.

В 1905-м году используя это открытие Джон Флеминг создал первую электронную лампу – “прибор для преобразования переменного тока в постоянный”. Эту дату считают началом рождения всей электроники (смотрите – В чем различия электроники и электротехники). Золотой эрой всей ламповой схемотехники считают период с 1935 по 1950 год.

Патент Джона Флеминга

Электронные лампы сыграли в развитии радиотехники и электроники очень важную роль. При помощи электронной лампы оказалось возможным генерировать незатухающие колебания, необходимые для радиотелефонии и телевидения. Появилась возможность усиливать принимаемые радиосигналы, благодаря чему стал доступен прием весьма отдаленных станций.

Далее, электронная лампа оказалась наиболее совершенным и надежным модулятором, т. е. прибором для изменения с низкой частотой амплитуды или фазы высокочастотных колебаний, что необходимо для радиотелефонии и телевидения.

Выделение колебаний звуковой частоты в приемнике (детектирование) также наиболее успешно осуществляется при помощи электронной лампы. Работа электронной лампы в качестве выпрямителя переменного напряжения долгое время обеспечивало питание радиопередающих и радиоприемных устройств. Кроме всего этого, электронные лампы широко применялись в электроизмерительной технике (вольтметры, частотомеры, осциллографы и др.), а также на них были построены первые компьютеры.

Появление во втором десятилетии XX века серийных технически пригодных электронных ламп дало радиотехнике мощный толчок, преобразивший всю радиотехническую аппаратуру и позволивший решить ряд задач, недоступных для радиотехники затухающих колебаний.

Патент на вакуумную лампу 1928 года

Реклама ламп в радиотехническом журнале 1938 года

Недостатки электронных ламп: большие размеры, громоздкость, низкая надежность устройств прстроеных на большом количестве ламп (в первых компьтерах использовались тысячи ламп), необходимость в дополнительной энергии для нагрева катода, большое выделение тепла, часто требующее дополнительного охлаждения.

Принцип работы и устройство электронных ламп

В электронной лампе используется процесс термоэлектронной эмиссии — испускания электронов накаленным металлом, находящимся в эвакуированном баллоне. Давление остатков газа настолько ничтожно, что разряд в лампе практически можно считать чисто электронным, так как ток положительных ионов исчезающе мал по сравнению с электронным током.

Устройство и принцип работы электронной лампы рассмотрим на примере электронного выпрямителя (кенотрона). Эти выпрямители, использующие электронный ток в вакууме, обладают наиболее высоким коэффициентом выпрямления.

Кенотрон состоит из стеклянного или металлического баллона, в котором создан высокий вакуум (порядка 10 -6 мм рт. ст.). Внутри баллона помещается источник электронов (нить), служащий катодом и накаливаемый током от вспомогательного источника: он окружен электродом большой площади (цилиндрическим или плоским), являющимся анодом.

Электроны, испускаемые катодом, попадая в поле между анодом и катодом, увлекаются к аноду, если его потенциал выше. Если же потенциал катода выше, то кенотрон тока не пропускает. Вольт-амперная характеристика кенотрона практически идеальна.

Высоковольтные кенотроны применялись в схемах питания радиопередатчиков. В лабораторной и радиолюбительской практике были широко распространены небольшие кенотронные выпрямители, позволяющие получить 50 – 150 мА выпрямленного тока при 250 – 500 В. Для накала нитей применялся переменный ток, снимаемый со вспомогательной обмотки трансформатора, питающего аноды.

Для упрощения монтажа выпрямителей (обычно двухполупериодных) использовались двуханодные кенотроны, содержащие в общем баллоне два раздельных анода при общем катоде. Сравнительно небольшая межэлектродная емкость кенотрона подходящей конструкции (в этом случае его называли диодом) и нелинейность его характеристики позволяли использовать его для различных радиотехнических нужд: детектирования, автоматических регулировок режима приемника и других целей.

В электронных лампах применялись две конструкции катодов. Катоды непосредственного (прямого) накала выполняются в виде нити или ленты, накаливаемой током от аккумулятора или трансформатора. Катоды косвенного накала (подогревные) устроены сложнее.

Вольфрамовая нить накала — нагреватель изолируется теплоустойчивым слоем керамики или окислов алюминия и помещается внутрь никелевого цилиндрика, покрытого снаружи оксидным слоем. Цилиндрик нагревается благодаря теплообмену с нагревателем.

Благодаря тепловой инерции цилиндра температура его, даже при питании переменным током, практически постоянна. Оксидный слой, дающий заметную эмиссию при низких температурах, является катодом.

Недостатком оксидного катода является неустойчивость его работы при недокале или перекале. Последний может получиться при слишком большом анодном токе (вблизи насыщения), так как из-за большого сопротивления катод при этом перегревается, оксидный слой теряет эмиссию и может даже разрушиться.

Большим преимуществом подогревного катода является отсутствие падения напряжения вдоль него (обусловленного током накала при прямом накале) и возможность питать нагреватели нескольких ламп от общего источника при полной независимости потенциалов их катодов.

Своеобразные формы нагревателей связаны со стремлением уменьшить вредное магнитное поле тока накала, создающее «фон» в громкоговорителе радиоприемника при питании нагревателя переменным током.

Обложка журнала “Radio-Craft” 1934 года

Двухэлектродные лампы применялись для выпрямления переменного тока (кенотроны). Подобные же лампы, применяемые при радиочастотах для детектирования, назывались диодами.

Через год после появления технически пригодной двухэлектродной лампы в нее был введен третий электрод — сетка, выполненный в виде спирали, расположенной между катодом и анодом. Получившаяся таким образом трехэлектродная лампа (триод) приобрела ряд новых ценных свойств и получила широкое применение. Такая лампа уже могла работать в качестве усилителя. В 1913-м году с ее помощью был создан первый автогенератор.

Изобретатель триода Ли де Форест (добавил в электронную лампу управляющую сетку)

Триод Ли де Фореста, 1906 год

В диоде анодный ток является функцией только анодного напряжения. В триоде же напряжение на сетке также управляет анодным током. В радиосхемах триоды (и многоэлектродные лампы) обычно использовались при переменном сеточном напряжении, называемом «управляющим напряжением».

Многоэлектродные лампы были созданы для того что бы повысить коэффициент усиления и уменьшить входную емкость лампы. Дополнительная сетка как бы экранирует анод от прочих электродов, поэтому ее называют экранирующей (экранной) сеткой. Емкость между анодом и управляющей сеткой в экранированных лампах снижается до сотых долей пикофарады.

У экранированной лампы изменения анодного напряжения сказываются на анодном токе гораздо меньше, чем у триода, следовательно, коэффициент усиления и внутреннее сопротивление лампы резко возрастает, крутизна же отличается от крутизны триода сравнительно мало.

Но работа экранированной лампы осложняется так называемым динатронным эффектом: при достаточно больших скоростях электроны, достигающие анода, вызывают вторичную эмиссию электронов с его поверхности.

Для его устранения между экранирующей сеткой и анодом вводится еще одна сетка, называемая защитной (противодинатронной). Она соединяется с катодом (иногда внутри лампы). Находясь под нулевым потенциалом, эта сетка тормозит вторичные электроны, не оказывая существенного влияния на движение основного электронного потока. Благодаря этому провал в характеристике анодного тока устраняется.

Подобные пятиэлектродные лампы — пентоды — получили широкое распространение, так как в зависимости от конструкции и режима работы им могут быть приданы разнообразные свойства.

Старинная реклама пентода фирмы Philips

Высокочастотные пентоды имеют внутреннее сопротивление порядка мегома, крутизну — до нескольких миллиампер на вольт, коэффициент усиления — до нескольких тысяч. Для низкочастотных выходных пентодов характерно значительно меньшее внутреннее сопротивление (десятки килоом) при крутизне того же порядка.

В так называемых лучевых лампах динатронный эффект устраняется не третьей сеткой, а концентрацией электронного пучка между второй сеткой и анодом. Она достигается симметричным расположением витков обеих сеток и удалением от них анода.

Из сеток электроны выходят концентрированными «плоскими лучами». Расхождение лучей дополнительно ограничивается защитными пластинами, имеющими нулевой потенциал. Концентрированный электронный луч создает у анода пространственный заряд. Вблизи анода образуется минимум потенциала, достаточный для торможения вторичных электронов.

В некоторых лампах управляющая сетка выполнена в виде спирали с переменным шагом. Так как густота сетки определяет коэффициент усиления и крутизну характеристики, то в этой лампе крутизна оказывается переменной.

При слабо отрицательных потенциалах сетки работает вся сетка, крутизна получается значительной. Но если потенциал сетки сделать сильно отрицательным, то густая часть сетки практически не будут пропускать электроны и работа лампы будет определяться свойствами редко намотанной части спирали, поэтому коэффициент усиления и крутизна значительно снижаются.

Для преобразования частоты служат пятисеточные лампы пентагриды. Две из сеток являются управляющими — на них подаются напряжения различной частоты, три другие сетки выполняют вспомогательные функции.

Реклама электронных вакуумных ламп в журнале 1947 года

Оформление и маркировка ламп

Существовало громадное количество различных типов электронных ламп. Наряду с лампами, имеющими стеклянный баллон были широко распространены лампы с металлическим или металлизированным стеклянным баллоном. Он экранирует лампу от внешних полей и увеличивает ее механическую прочность.

Электроды (или большая часть их) выводятся к штырькам цоколя лампы. Наиболее распространен восьмиштырьковый цоколь.

Малогабаритные лампы «пальчикового» типа, типа «желудь» и миниатюрные с диаметром баллона 4 – 10 мм (вместо обычного диаметра 40 – 60 мм) цоколя не имеют: выводы электродов делаются через основание баллона – это снижает емкость между вводами. Малые по размеру электроды также имеют небольшую емкость, поэтому такие лампы могут работать при более высоких частотах, чем обычные: до частот порядка 500 мггц.

Для работы на более высоких частотах (до 5000 мггц) использовали «маячковые» лампы. Они отличаются конструкцией анода и сетки. Дискообразная сетка расположена у плоского основания цилиндра, впаянного в стекло (анода) на расстоянии десятых долей миллиметра. В мощных лампах баллоны делали из специальной керамики (металлокерамические лампы). Имеются и другие лампы для очень высоких частот.

В электронных лампах на очень большие мощности, приходилось увеличивать площадь анода и даже прибегать к принудительному воздушному или водяному охлаждению.

Маркировка и цоколевка ламп очень разнообразна. Кроме того, системы маркировки несколько раз изменялись. В СССР было принято обозначение из четырех элементов:

1. Число, указывающее напряжение накала, округленное до целых вольт (наиболее распространены напряжения 1,2; 2,0 и 6,3 В).

2. Буква, указывающая тип лампы. Так, диоды обозначаются буквой Д, триоды С, пентоды с короткой характеристикой Ж, с длинной К, выходные пентоды П, двойные триоды Н, кенотроны Ц.

3. Число указывающее порядковый номер заводской разработки.

4. Буква, характеризующая оформление лампы. Так металлические лампы теперь совсем не имеют последнего обозначения, стеклянные обозначаются буквой С, пальчиковые П, желуди Ж, миниатюрные Б.

Подробные данные о маркировке, цоколевке и размерах ламп лучше всего искать в специализированной литературе 40-х – 60-х годов XX века.

Использование ламп в наше время

В 70-х годах все электронные лампы были вытеснены полупроводниковыми приборами: диодами, транзисторами, тиристорами и др. В некоторых областях вакуумные лампы применяются до сих пор, например в микроволновых печах используются магнетроны, а кенотроны используются выпрямления и быстрой коммутации большого напряжения (десятки и сотни киловольт) на электрических подстанциях для передачи электроэнергии постоянным током.

Существует большое количество любителей, т.н. “лампового звука”, которые в наше время конструируют любительские звуковые устройства на электронных вакуумных лампах.

Принцип работы светодиода: как работает лампа, технические характеристики и история ее создания

Имеющая многолетнюю историю лампочка светодиодная является на сегодняшний день самой экономичной и долговечной. Она еще не так доступна для обычного потребителя, как более дешевые источники искусственного света, но впереди ее ждет большое будущее.

Первое сообщение

В начале прошлого века (1907 год) английский изобретатель Генри Раунд впервые обнаружил излучение света от твердотельного диода. Сообщение об этом событии появилось в научных кругах. Раунд исследовал и описал явление электролюминесценции при прохождении тока через полупроводник – соединение карбида кремния и металла. На катоде появлялось свечение трех цветов:

Независимо от Генри Раунда подобные результаты были получены советским ученым.

В лаборатории Лосева

Через 16 лет после первого сообщения Раунда о необычном явлении советский физик Олег Лосев открыл люминесценцию полупроводникового перехода. Во время экспериментов в своей лаборатории в Нижнем Новгороде он заметил свечение в кристаллах из карборунда и стальной проволоки, применявшихся в радиопередатчиках.

О наблюдении ученый сообщил в прессе. К сожалению, это открытие не стало рождением светодиодной лампочки. В то время никто кроме самого изобретателя не понял значение и возможности электролюминесценции.

Хотя теоретически объяснить открытое явление в то время не представлялось возможным, советский ученый в полной мере оценил уникальность открытия, позволявшего создавать безвакуумные, очень экономичные и быстродействующие источники света. Он запатентовал свое изобретение, назвав его «Световым реле».

Без поддержки со стороны государства Лосев не смог организовать полномасштабные исследования своего открытия. Он продолжал самостоятельно изучать полученные результаты исследований. К сожалению, Лосев умер во время войны в блокадном Ленинграде. Если бы не трагические события истории, возможно, именно Советскому Союзу принадлежала честь производства первых светодиодных ламп.

История исследований электролюминесценции в СССР на этом не закончилась. Выдающийся физик из Беларуси Ж. Алферов защитил в 1970 году диссертацию, тема которой заключалась в исследовании в полупроводниках гетеропереходов. Он получил степень доктора наук, а позднее стал профессором и почетным академиком Российской академии.

Через тридцать лет (2000, Швеция) Алферов получил Нобелевскую премию за прорыв в исследовании полупроводниковых гетероструктур. Его изобретение позволило усовершенствовать светодиоды, увеличив внешний световой поток для красной части видимого спектра излучения.

Начало практического использование светодиода

Американцам принадлежит первенство в изобретении светодиода, имевшего практическое применение. В шестидесятых годах двадцатого столетия Ник Холоньяк сделал первый красный светодиод по заказу компании, занимающейся производством электрических приборов. Это произошло в Иллинойском университете.

Немного раньше американские ученые запатентовали первый инфракрасный светодиод, который был слишком сложно устроен и не нашел практического применения. После этого события разработкой светодиодов занялись в широких масштабах, с целью их использования в промышленности. Были получены лампы, светящиеся желто-зеленым светом. В 1968 году фирмой «Монсанто» была выпущена первая серия таких ламп. Другой компанией в целях рекламы был создан слабосветящийся красным светом дисплей, на котором отображалась информация при помощи работы встроенных красных светодиодов.

Учеником Холонька Джорджем Крафордом был изобретен желтый светодиод. Он по яркости в десять раз превосходил первый красный светодиод его учителя.

Работавший в лаборатории компании «АйБиЭм» Дж. Панков изобрел светодиоды фиолетового и голубого излучения. К сожалению, небольшой срок их службы не позволил применять их в промышленных целях.

Фирма Hewlett Packard в 1976 году выпустила серию оранжево-красных и желто-зеленых светодиодов, которые работали на фосфидах.

Открытие в Японии

К началу двадцать первого века были получены все цвета диапазона, не удавалось создать только синий излучатель. Честь его открытия в девяностых годах двадцатого века принадлежит доктору Накамура из Японии. Благодаря его изобретению недорогого синего светодиода появилась возможность выпускать лампы белого света, который получается в результате сочетания синего, красного и зеленого излучения. Эти лампы нашли широкое применение не только в быту, для освещения помещений, но и в других электроприборах. Появились экраны со светодиодной подсветкой. Компания «Ситизен Электроникс» впервые в 2003 году выпустила СИД модуль, запатентовав технологию.

Ученые из Японии вместе с Судзи Накамуро получили Нобелевскую премию за свое изобретение. А прогресс светодиодных устройств пошел с тех пор ускоренными темпами.

Перспективы

Отживает свое привычная лампочка Ильича с вольфрамовой спиралью в вакуумной колбе. Электроэнергия при ее горении расходуется в основном на нагрев спирали. Поэтому КПД невелик и составляет не более 4%. Замена лампочки происходит довольно часто из-за ограниченного срока службы и быстрого перегорания вольфрамовой спирали.

Немного экономичнее галогенновая лампочка – лампа, в которую добавлен газ. Принцип ее работы позволяет продлить срок службы благодаря возвращению вольфрама на тело накала в особой среде, которой наполнена колба. Повышается также температура внутренней спирали, что позволяет увеличить яркий свет лампочки. Максимальный срок службы галогенных ламп не превышает полутора лет.

Необходимы осветительные приборы не только для того, чтобы сделать светлее квартиры и дома. Лампочка ближнего света в автомобиле помогает в ночное время избежать аварий на дороге. Это может быть галогенная лампа или светодиодный прибор.

Преимущество светодиодных лампочек позволило найти им широкое применений во многих отраслях производства. Электроэнергия в них расходуется очень экономно, так как непосредственно преобразовывается в световой поток, миную необходимость нагрева поверхностей для получения светового потока. Срок службы тоже впечатляет. Горит лампочка более двадцати лет.

Купить светодиодные лампы в Тюмени можно у нас в магазине. Товар в наличии.

Читайте также:  Сборка термогенератора своими руками для получения электричества: особенности процесса
Добавить комментарий